激光焊接应用与调试(激光焊接工艺培训)
激光加工工艺及应用
激光加工是无接触的方式,不会产生工具与工件表面的摩擦阻力,也不会直接对工件进行冲击,工件几乎不会发生变形,且激光是对局部进行加工,对非激光照射的部分几乎没有影响,所以激光加工是高速、高效、高精度的加工方式。激光加工技术是光与机电技术的结合,激光光束的移动速度、功率密度和方向等都可以调节,易与数控系统配合来对复杂工件进行加工,可由此对其实现不同层面和范围的应用。
一
激光模切技术
激光模切技术是根据在软件中设计好的工件图样,将激光束聚焦后直接对材料表面完成模切或压痕效果的一种切割方法。激光模切技术具有切割精度高、模切产品粗糙度低、模切加工时间短、生产效率高等特点。由于无须更换模切刀版,也可实现不同版式工件之间的快速转换,这样节省了传统模切刀版调整时间,尤其适用于轻薄、异形工件的加工。
典型的激光模切系统应该包括有激光器、扫描系统、控制系统、冷却系统、惰性气体保护室、废料清除系统以及反馈系统。激光在模切加工中扮演“模切刀”的角色,其对最终的加工效果的影响是模切机各组成部分中最大的,目前市场上用于激光加工的激光器主要有YAG激光器、CO2激光器和半导体激光器等。最常使用的是出波长能被非金属很好吸收且能够产生连续激光或非连续激光脉冲的CO2激光器。
二
激光雕刻技术
激光雕刻机的主要组成为:激光器(提供激光光束,包括聚光腔、反射镜)、聚焦系统(使高功率密度的激光能量聚集在小面积上,达到最佳的雕刻效率)、导光系统(改变激光照射方向)、工作台(用于承载或移动被雕刻工件)、控制面板(调整和控制电源及激光器)、水冷系统(调控激光器内的温度)。由于主要是对非金属材料加工,所以激光雕刻与模切一样常选用CO2激光器。为实现高速点阵雕刻和适量雕刻,激光雕刻大多采用振镜式导光系统。三
激光焊接技术
激光焊接技术主要用于对金属及塑料制品进行焊接加工。以前金属焊接大多采用电阻焊接工艺,但电阻焊存在耗电量大、热影响区大、接口不美观、可焊材料厚度受限等问题,所以激光焊接技术的应用越来越广泛。激光焊接金属的作用机理是用激光辐射金属表面,通过激光与金属的耦合作用使待焊接部位在极短时间内瞬间熔化甚至气化,再冷却凝固结晶而形成焊缝。激光焊接可分为热传导焊接和深熔焊两种,前者会发生激光的功率密度较小,辐射能只作用于金属表面,材料下层则靠热传导受热熔化;深熔焊会产生小孔效应,即输入激光能量很大,远大于传导及散热的速率时,照射区域会在极短时间发生气化形成小孔,孔内压力形成动态的平衡,光束可以直接照射到孔底。小孔吸收射入的所有能量使孔壁金属熔化,由此可形成尤其窄而深的焊缝,且改变焊接参数可以使焊缝熔深在较大范围内变化,所以实际更多采用深熔焊接方式。
接下来讨论用于焊接金属的激光器的选择。金属焊接大多采用YAG激光器,因为YAG激光比 CO22激光更易于被金属吸收,且受等离子体影响较小,焊接操作灵活。但YAG激光器运作时易产生大量热损耗,使激光腔温度升高产生激光热透镜效应,从而降低激光功率和能量转化效率。YLR光纤激光器是以光纤为基材,掺杂不同的稀土离子的光纤传输传输,具有体积小、成本低、激光功率高等优点,焊接熔深和速度更高,较YAG激光器更胜一筹。
激光焊接金属过程几乎不会产生碎屑废渣,且无需添加粘合剂,具有速度快、精度高、热影响区小、深宽比大、焊缝美观等优点,易实现自动化,可产生良好的社会和经济效益,已成为金属包装气密性封装等的主要方式。
对于塑料材料工件而言,传统的塑料焊接主要采用超声波焊接、摩擦焊接、振动焊接、热板焊接等技术,而实际时加工既要考虑其密封性能, 又要防止加工过程中会受到污染, 塑料激光焊接的高精度和无接触性正好可以满足这样的要求。
[img]通发激光焊接设备日常使用要注意的事项有那些?
我们在工作当中进行的激光器的日常维护:
注意:激光器维护的必须由经过专门培训的人员进行,否则容易产生严重的人为损坏。
1)为了保证激光器一直处于正常的工作状态,连续工作二周后或停止使用一段时间时,在开机前首先应对YAG棒、介质膜片及镜头保护玻璃等光路中的组件进行检查,确定各光学组件没有灰尘污染、霉变等异常现象,如有上述现象应及时进行处理,保证各光学组件不会在强激光照射下损坏。(若设备的使用环境比较清洁,上述检查可以相应延长至一个月甚至更长)
2)冷却水的纯度是保证激光输出效率及激光器聚光腔组件寿命的关键,使用中应每周检查一次内循环水的电导率,保证其电导率30.5MW·cm,每月必须更换一次内循环的去离子水,新注入纯水的电导率必须32MW·cm。随时注意观察冷却系统中离子交换柱的颜色变化,一旦发现交换柱中树脂的颜色变为深褐色甚至黑色,应立即更换树脂。
3)设备操作人员可以经常用黑色像纸检查激光器输出光斑,一旦发现光斑不均匀或能量下降等现象,应及时对激光器的谐振腔进行调整,确保激光输出的光束质量。典型光斑图象如下:调好后的光斑未调好的光斑激光谐振腔的调整。
警告:本产品属于4类激光设备,直接的强激光照射可以对人体皮肤产生严重伤害,特别是将使眼睛致盲,调试操作人员必须具备激光安全防护的常识,工作中必须佩带针对1.064mm波长的专用激光防护眼镜。
注意:当强激光直接照射到木材等易燃品时会产生明火,调试过程中应在激光输出的光路上放置一块吸收性能良好的黑色金属材料作为光束终止器,防止引起火灾事故。
注意:激光器的调整必须由经过专门培训的人员进行,否则会因激光器失调或调偏造成光路上其它组件的损坏。激光谐振腔的调整步骤如下:1.检查基准光源
红色的半导体激光是整个光路的基准,必须首先确保其准确性。用一个简易的高度规检查红光是否与光具座导轨顶面平行,并处于光具座两条导轨间的中心线上,如出现偏差,可以通过6个紧固螺钉进行调整。调整好后注意再检查一遍所有紧固螺钉是否已经完全拧紧。2.调整输出镜(输出介质膜片)位置
调整输出镜前,应将装有YAG棒的聚光腔拿开,以免因光路中YAG棒的折射偏差影响调整的准确性。输出介质膜片的准确位置应该是使红光位于其中心位置并能将红光完全反射回红光的出射孔,否则应通过膜片架的旋钮进行仔细调整。注意调整完后应将膜片架调节旋钮上的锁紧圈完全锁紧,确保其位置的稳定性,然后再一次检查其反射光的位置是否保持在原位。3.检查YAG棒的安装位置
用透明胶纸分别贴在YAG棒套的两端,观察红光光斑是否在两个棒套管的正中间位置,如有偏差,应通过调整聚光腔的位置加以修正。然后观察YAG棒的反射光位置,应与红光的出射孔重合,否则在兼顾红光尽可能保持在棒套管中心位置的前提下调整聚光腔的位置,使反射光尽量与出射孔靠拢,至少应保证调整到与出射孔的偏差小于1mm。4.调整全反镜(全反介质膜片)位置
第一步:检查红光是否在介质膜片的中间位置,否则应调整介质膜片架的安装位置使红光在介质膜片的中心。
第二步:粗调介质膜片架旋钮,使红光反射回出射孔。
第三步:开启激獾缭矗??缌鞯髦?00A左右,脉宽调整到约2ms,重复频率调整到0Hz,踩一下脚踏开关使脉冲氙灯闪光,此时用完全暴光的全黑像纸放在输出镜前,可以观察到有激光输出,反复调整膜片架的两个旋钮,使输出光斑最圆且均匀,然后逐渐降低电流至120A左右,进一步反复仔细地微调旋钮,尽可能使打到像纸上的光斑最圆且最强部分集中在光斑中心。
第四步:检查激光是否与红光重合,将像纸固定在激光输出镜的前端并尽量远离输出镜的位置,发出一个激光脉冲,观察像纸上的光斑中心是否与红光中心重合,如不重合,可以微调输出镜和全反镜,使光斑与红光重合,然后再将像纸固定在离激光器输出镜800~1000mm的地方,再次检查光斑是否与红光重合。如能较好地重合,激光器即调整到了最佳状态。
第五步:锁紧各个调节旋钮,再一次检查像纸上的光斑是否良好,并与红光同轴。否则应重新调整。5.检查光闸的位置
人工旋转反射镜片支架,将光闸推至挡光位置,观察红光是否在镜片的中间,其反射光是否位于光束终止器中心的吸收锥体上,如位置不正确可稍加调整,最后,应特别注意仔细检查一下光闸反射镜片是否清洁,受污染的镜片在使用中很快会炸裂。希望我们的分析对你在日常工作中有所帮助!
激光焊接机的激光焊接机参数
激光焊接机参数调整方法如下:
激光脉冲宽度:
激光脉冲宽度是激光焊接机在焊接过程的一个重要参数,激光脉宽,决定着焊接物的焊接宽度和深度,激光脉宽的设置影响着焊接的效果;脉宽越长热影响区越大,熔深是随脉宽的1/2次方增加。其实对于每种材料,都有一个可使熔深达到最大的最佳脉冲宽度。
激光功率密度:
激光功率密度是激光加工中最关键的参数之一。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高;因此功率密度越高,工件表层加热至沸点越快,采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。
激光脉冲波形:
激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有40~70%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大,是以,不合的金属对于激光的反射率和激光的应用率都不一样,要进行有效的焊接就必须输入不合波形的激光,如许焊缝处的金属组织才能在最佳的方法结晶,形成与基体金属一致的组织,才能形成高质量的焊缝。在实际焊接中可针对不同材料的焊接特性,灵活调整脉冲波形。如对于易脆材料可以采用能量缓慢降低的脉冲波形,减慢冷淬速度。
激光焊接机的参数设置调整主要是对激光脉冲宽度,激光功率密度,激光脉冲波形的设置调整,对应不同的焊接材料,激光焊接机的参数都是有不同的调试数据。激光焊接机的参数设置调整主要是你这三大要点,用户可根据焊接材料自行调整激光焊接机参数。
激光焊接机主要应用的领域有哪些?有什么优势吗?
激光焊接是激光材料加工技术应用的重要方面之一。20世纪70 年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。
与其它焊接技术相比,激光焊接的主要有以下几个优点:
1、速度快、深度大、变形小
2、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。
3、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。
4、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。
5、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。
6、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接
7、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来, 在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。
激光焊接应用与调试的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于激光焊接工艺培训、激光焊接应用与调试的信息别忘了在本站进行查找喔。微信号:ymsc_2016
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~