激光焊接工艺参数对焊缝成形的影响(激光焊接对缝隙的要求)
激光焊接中的主要参数包括哪些,分别是如何影响焊缝成形的
激光焊接中的主要参数包括激光功率、焊接速度和焦点位置。激光功率增大时,熔深增大。焊接速度增大时,熔深及熔宽均下降。当焦点位于工件较深部位时,形成V形焊缝;当焦点在工件以上较高距离(正离焦量大)时,形成“钉头”状焊缝,且熔深减小;而当焦点位于工件表面以下1mm左右时,焊缝截面两侧接近平行。
[img]激光焊接技术的工艺参数
连续CO2激光焊的工艺参数 厚度/mm 焊速/(cm/s) 缝宽/mm 深宽比 功率/kw 对接焊缝 321不锈钢(1Cr18Ni9Ti) 0.13 3.81 0.45 全焊透 5 0.25 1.48 0.71 全焊透 5 0.42 0.47 0.76 部分焊透 55 17-7不锈钢(0Cr7Ni7A1) 0.13 4.65 0.45 全焊透 5 302不锈钢(1Cr18Ni9) 0.13 2.12 0.50 全焊透 5 0.20 1.27 0.50 全焊透 5 0.25 0.42 1.00 全焊透 5 6.35 2.14 0.80 7 3.5 8.9 1.27 1.00 3 8 12.7 0.42 1.00 5 20 20.3 21.1 1.00 5 20 6.35 8.47 —— 3.5 16 因康镍合金600 0.10 6.35 0.25 全焊透 5 0.25 1.69 0.45 全焊透 5 镍合金200 0.13 1.48 0.45 全焊透 5 蒙乃尔合金400 0.25 0.60 0.60 全焊透 5 工业纯钛 0.13 5.92 0.38 全焊透 5 0.25 2.12 0.55 全焊透 5 低碳钢 1.19 0.32 —— 0.63 0.65 搭接焊缝 镀锡钢 0.30 0.85 0.76 全焊透 5 302不锈钢(1Cr18Ni9) 0.40 7.45 0.76 部分焊透 5 0.76 1.27 0.60 部分焊透 5 0.25 0.60 0.60 全焊透 5 角缝焊 321不锈钢(1Cr18Ni9Ti) 0.25 0.85 —— —— 5 端接焊缝 321不锈钢(1Cr18Ni9Ti) 0.13 3.60 —— —— 5 0.25 1.06 —— —— 5 0.42 1.90 —— —— 5 17-7不锈钢(0Cr17Ni7A1) 0.13 3.60 —— —— 5 因康镍合金600 0.10 1.06 —— —— 5 0.25 0.60 —— —— 5 0.42 0.76 —— —— 5 镍合金200 0.18 1.06 —— —— 5 蒙乃尔合金400 0.25 激光深熔焊接的主要工艺参数 激光焊接过程常使用惰性气体来保护熔池,当某些材料焊接可不计较表面氧化时则也可不考虑保护,但对大多数应用场合则常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。氦气不易电离(电离能量较高),可让激光顺利通过,光束能量不受阻碍地直达工件表面。这是激光焊接时使用最有效的保护气体,但价格比较贵。氩气比较便宜,密度较大,所以保护效果较好。但它易受高温金属等离子体电离,结果屏蔽了部分光束射向工件,减少了焊接的有效激光功率,也损害焊接速度与熔深。使用氩气保护的焊件表面要比使用氦气保护时来得光滑。氮气作为保护气体最便宜,但对某些类型不锈钢焊接时并不适用,主要是由于冶金学方面问题,如吸收,有时会在搭接区产生气孔。使用保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射。特别在高功率激光焊接时,由于其喷出物变得非常有力,此时保护透镜则更为必要。保护气体的第三个作用是对驱散高功率激光焊接产生的等离子屏蔽很有效。金属蒸气吸收激光束电离成等离子云,金属蒸气周围的保护气体也会因受热而电离。如果等离子体存在过多,激光束在某种程度上被等离子体消耗。等离子体作为第二种能量存在于工作表面,使得熔深变浅、焊接熔池表面变宽。通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。中性原子越轻,碰撞频率越高,复合速率越高;另一方面,只有电离能高的保护气体,才不致因气体本身的电离而增加电子密度。表 常用气体和金属的原子(分子)量和电离能
材料 氦 氩 氮 铝 镁 铁原子(分子)量 4 40 28 27 24 56电离能(eV) 24.46 15.68 14.5 5.96 7.61 7.83从表可知,等离子体云尺寸与采用的保护气体不同而变化,氦气最小,氮气次之,使用氩气时最大。等离子体尺寸越大,熔深则越浅。造成这种差别的原因首先由于气体分子的电离程度不同,另外也由于保护气体不同密度引起金属蒸气扩散差别。氦气电离最小,密度最小,它能很快地驱除从金属熔池产生的上升的金属蒸气。所以用氦作保护气体,可最大程度地抑制等离子体,从而增加熔深,提高焊接速度;由于质轻而能逸出,不易造成气孔。当然,从我们实际焊接的效果看,用氩气保护的效果还不错。等离子云对熔深的影响在低焊接速度区最为明显。当焊接速度提高时,它的影响就会减弱。保护气体是通过喷嘴口以一定的压力射出到达工件表面的,喷嘴的流体力学形状和出口的直径大小十分重要。它必须以足够大以驱使喷出的保护气体覆盖焊接表面,但为了有效保护透镜,阻止金属蒸气污染或金属飞溅损伤透镜,喷口大小也要加以限制。流量也要加以控制,否则保护气的层流变成紊流,大气卷入熔池,最终形成气孔。为了提高保护效果,还可用附加的侧向吹气的方式,即通过一较小直径的喷管将保护气体以一定的角度直接射入深熔焊接的小孔。保护气体不仅抑制了工件表面的等离子体云,而且对孔内的等离子体及小孔的形成施加影响,熔深进一步增大,获得深宽比较为理想的焊缝。但是,此种方法要求精确控制气流量大小、方向,否则容易产生紊流而破坏熔池,导致焊接过程难以稳定。 焊接起始、终止点的激光功率渐升、渐降控制
激光深熔焊接时,不管焊缝深浅,小孔现象始终存在。当焊接过程终止、关闭功率开关时,焊缝尾端将出现凹坑。另外,当激光焊层覆盖原先焊缝时,会出现对激光束过度吸收,导致焊件过热或产生气孔。为了防止上述现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率用电子学方法在一个短时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。
焊接参数对焊缝有何影响
非常大的影响:首先焊缝的成型无论从外观和性能来说,焊接的参数都非常重要。合适的参数,可以达到好的焊缝外观,工件的性能也好。如果是不合适的参数,会导致外观难看,焊接缺陷多,使得工件的性能降低。
影响激光焊接质量的原因是什么
影响激光焊接质量的因素很多.其中一些极易波动,具有相当的不稳定性。如何正确设定和控制这些参数,使其在高速连续的激光焊接过程中控制在合适的范围内,以保证焊接质量首先是焊缝成形的可靠性和稳定性,是关系到激光焊接技术实用化、产业化的重要问题。 以板材对接单面焊双面成形工艺为例,影响激光焊接质量的主要因素分焊接设备,工件状况和工艺参数三方面,如图11所示。
图11 影响激光焊接质量的主要因素 1 焊接设备
对激光器的质量要求最主要的是光束模式和输出功率及其稳定性。光束模式是光束质量的主要指标,光束模式阶数越低,光束聚焦性能越好,光斑越小,相同激光功率下功率密度越高,焊缝深宽越大。一般要求基模(TEM00)或低阶模,否则难以满足高质量激光焊接的要求。虽然目前国产激光器在光束质量和功率输出稳定性方面用于激光焊接还有一定困难。但从国外情况来看,激光器的光束质量和输出功率稳定性已相当高,不会成为激光焊接的问题。
光学系统中影响焊接质量最大的因素是聚焦镜,所用焦距一般在127mm(5in)到200mm(7.9in)之间,焦距小对减小聚焦光束腰斑直径有好处,但过小容易在焊接过程中受污染和飞溅损伤。 2.工件状况
激光焊接要求对工件的边缘进行加工,装配有很高的精度,光斑与焊缝严格对中,而且工件原始装配精度和光斑对中情况在焊接过程中不能因焊接热变形而变化。这是因为激光光斑小,焊缝窄,一般不加填充金属,如装配不严间隙过大,光束能穿过间隙不能熔化母材,或者引起明显的咬边、凹陷,如光斑对缝的偏差稍大就有可能造成未熔合或未焊透。所以,一般板材对接装配间隙和光斑对缝偏差均不应大于0.1mm,错边不应大于0.2mm。当焊缝较长时,焊前的准备难度很大,普通剪床F料一般不能满足要求.必须经过机械加工或用高精度剪床剪切,还必须根据具体工件情况设计合适的精密胎夹具。实际生产中,有时因不能满足这些要求,而无法采用激光焊接技术。 3.焊接参数
(1)对激光焊接模式和焊缝成形稳定件的影响焊接参数中最主要的是激光光斑的功率密度,它对焊接模式和焊缝成形稳定性影响如下:随激光光斑功率密度由小变大依次为稳定热导焊、模式不稳定焊和稳定深熔焊[1][2],其产生条件和焊缝成形特征如表2所示。 表2 三种激光焊接过程的基本特征
焊接过程 稳定热导焊(HCW) 模式不稳定焊(UMW) 稳定深熔焊(DPW) 产生条件 低功率密度 功率密度介于HCW和DPW之间 高功率密度 焊接模式 热导焊 热导焊和深熔焊随机出现 深熔焊
小孔特点 不形成小孔 小孔间断性地产生和消失 小孔稳定存在
等离子体特点 不产生等离子体 等离子体间断性地产生和消失 稳定的等离子体 焊缝成形特征 熔深和熔宽均很小的近半圆形焊缝 焊缝成形极不狗宝,熔深和熔宽在大小两给跳变 熔深较大的指状焊缝
激光光斑的功率密度,在光束模式和聚焦镜焦距一定的情况下,主要由激光功率和光束焦
点位置决定。激光功率密度与激光功率成正比。而焦点位置的影响则存在一个最佳值;当光束焦点处于工件表面下某一位置(1~2mm范围内,依板厚和参数而异)时,即可获得最理想的焊缝。偏离这个最佳焦点位置,工件表面光斑即变大,引起功率密度变小,到一定范围,就会引起焊接过程形式的变化。
焊接速度对焊接过程形式和稳定件的影响不如激光功率和焦点位置那样显著,只有焊接速度太大时,由于热输入过小而出现无法维持稳定深熔焊过程的情况。
实际焊接时,应根据焊件对熔深的要求选择稳定深熔焊或稳定热导焊,而要绝对避免模式不稳定焊。
(2)在深熔焊范围内,焊接参数对熔深的影响1][3] 在稳定深熔焊范围内,激光功率越高,熔深越大,约为0.7次方的关系;而焊接速变越高,熔深越浅。在一定激光功率和焊接速度条件下焦点处于最佳位置时熔深最大,偏离这个位置,熔深则下降,甚至变为模式不稳定焊接或稳定热导焊。
(3)保护气体的影响 保护气体通常采用氩气或氦气.它们产生等离子体的倾向显著 不同:氦气因其电离电体高,导热快.在同样条件下,比氩气产生等离子体的倾向小,因而可获得更大的熔深。
在一定范围内,随着保护气体流量的增加,抑制等离子体的倾向增大,因而熔深增加,但增至一定范围即趋于平稳。
(4)各参数的可监控性分析在四种焊接参数中,焊接速度和保护气体流量属于容易监控和保持稳定的参数,而激光功率和焦点位置则是焊接过程中可能发生波动而难于监控的参数。
虽然从激光器输出的激光功率稳定性很高且容易监控,但由于有导光和聚焦系统的损耗,到达工件的激光功率会发生变化,而这种损耗与光学工件的质量、使用时间及表面污染情况有关,故不易监测,成为焊接质量的不确定因素。
激光焊接过程中等离子体是如何产生的,对焊接过程有何影响
通常是焊接对热敏感的金属,由于激光能量集中,焊接速度过快,焊接完后没有气体或焊剂保护导致的裂纹缺陷。
可以用激光焊+MIG熔化极氩弧焊,复合焊焊接。利用氩弧焊氩气保护,可以有效减少裂纹缺陷产生,提高焊接质量。
影响激光焊接质量的焊接工艺参数主要包含:激光率、焊接速度、透镜焦距,聚焦位置,保护气体等。激光功率和焊接速度是影响焊接质量的最主要参数,焊接厚度取决于激光功率,约为功率(KW)的0.7次方,通常功率增大,焊接深度增加;速度增加,熔深变浅,焊缝和热影响区变窄,生产率增高。
扩展资料:
(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。
(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。
(3)不需使用电极,没有电极污染或受损的顾虑。且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。
(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。
参考资料来源:百度百科-激光焊
激光焊接的焊缝出现变形,如何解决
无论是光纤激光焊接机,还是全自动激光焊接机,抑或其他机型,在焊接过程中,部件有时会或多或少地产生变形,这是比较常见的现象。这些变形主要有几种:纵向变形、横向变形 、弯曲变形、角变形、波浪变形、扭曲变形等。这是什么原因造成的呢?
焊接部件的变形是由诸多因素同时作用造成的。其中最主要的因素有:焊接上温度分布不均匀;熔敷金属的收缩;焊接接头金属组织转变及工件的刚性约束等。焊接部件的变形还和焊接接头形式,工件的厚度和形状、焊缝的长度及其位置不同等有关。这些因素都会在焊接时会产生各种形式不同的变形。
了解研究激光焊接部件变形的原因,找出问题的解决方法有助于我们提高激光焊接的品质,保证产品的质量,提高生产效益。
激光焊接工艺参数对焊缝成形的影响的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于激光焊接对缝隙的要求、激光焊接工艺参数对焊缝成形的影响的信息别忘了在本站进行查找喔。微信号:ymsc_2016
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~