激光焊接吹气的作用(激光焊接用气吗)
激光焊接的模式有哪两种
激光焊接机有两种基本形式:
激光焊接机有热导焊和深熔焊,前者所用激光功率密度较低(105~106W/cm2),工件吸收激光后,仅抵达表面熔化,然后依托热传导向工件内部传递热量构成熔池。这种焊接形式熔深浅,深宽比较小。
后者激光动车密度高(106~107W/cm2),工件吸收激光后敏捷熔化甚至气化,熔化的金属在蒸汽压力作用下构成小孔激光束可直照孔底,使小孔不断延伸,直至小孔内的蒸汽压力与液体金属的表面张力和重力平衡为止。小孔随着激光束沿焊接方向移动时,小孔前方熔化的金属绕过小孔流向后方,凝结后构成焊缝。这种焊接形式熔深大,深宽比也大。在机械制造范畴,除了那些菲薄零件之外,通常应选用深馆焊。
深熔焊进程发作的金属蒸气和维护气体,在激光作用下发作电离,从而在小孔内部和上方构成等离子体。等离子体对激光有吸收、折射和散射作用,因此通常来说熔池上方的等离子领会削弱抵达工件的激光能量。并影响光束的聚集作用、对焊接不利。
激光焊接机通常可辅加侧吹气驱除或削弱等离子体。小孔的构成和等离子体效应,使焊接进程中伴随着具有特征的声、光和电荷发作,研究它们与焊接标准及焊缝质量之间的联系,和利用这些特征信号对激光焊接进程及质量进行监控,具有十分重要的理论意义和实用价值。
因为经聚集后的激光束光斑小(0.1~0.3mm),功率密度高,比电弧焊(5×102~104W/cm2)高几个数量级,因此激光焊接机具有传统焊接办法无法比拟的明显优点:加热规模小,焊缝和热影响区窄,接头性能优秀;剩余应力和焊接变形小,可以完成高精度焊接;可对高熔点、高热导率,热灵敏材料及非金属进行焊接;焊接速度快,生产率高;具有高度柔性,易于完成自动化。
与电子束焊有许多相似之处,但它不需要真空室,不发作X射线,更适合生产中推广应用。激光焊接实际上已取得了电子束焊接20年前的地位,变成高能束焊接技术发展的主流
[img]汽车动力电池激光焊接为什么要除尘和吹氮气
氮气是保护气体,是防止焊接过程中因金属高温形成氧化,所以用氮气隔离空气。除尘的目的是防止杂质夹杂在焊接表面,同时也是为了防止电离放弧。
激光焊的特点
激光焊接有两种基本模式:热导焊和深熔焊,前者所用激光功率密度较低(105~106W/cm2),工件吸收激光后,仅达到表面熔化,然后依靠热传导向工件内部传递热量形成熔池。这种焊接模式熔深浅,深宽比较小。后者激光动车密度高(106~107W/cm2),工件吸收激光后迅速熔化乃至气化,熔化的金属在蒸汽压力作用下形成小孔激光束可直照孔底,使小孔不断延伸,直至小孔内的蒸气压力与液体金属的表面张力和重力平衡为止。小孔随着激光束沿焊接方向移动时,小孔前方熔化的金属绕过小孔流向后方,凝固后形成焊缝。这种焊接模式熔深大,深宽比也大。在机械制造领域,除了那些微薄零件之外,一般应选用深馆焊。
深熔焊过程产生的金属蒸气和保护气体,在激光作用下发生电离,从而在小孔内部和上方形成等离子体。等离子体对激光有吸收、折射和散射作用,因此一般来说熔池上方的等离子体会削弱到达工件的激光能量。并影响光束的聚焦效果、对焊接不利。通常可辅加侧吹气驱除或削弱等离子体。小孔的形成和等离子体效应,使焊接过程中伴随着具有特征的声、光和电荷产生,研究它们与焊接规范及焊缝质量之间的关系,和利用这些特征信号对激光焊接过程及质量进行监控,具有十分重要的理论意义和实用价值。
由于经聚焦后的激光束光斑小(0.1~0.3mm),功率密度高,比电弧焊(5×102~104W/cm2)高几个数量级,因而激光焊接具有传统焊接方法无法比拟的显著优点:加热范围小,焊缝和热影响区窄,接头性能优良;残余应力和焊接变形小,可以实现高精度焊接;可对高熔点、高热导率,热敏感材料及非金属进行焊接;焊接速度快,生产率高;具有高度柔性,易于实现自动化。
激光焊与电子束焊有许多相似之处,但它不需要真空室,不产生X射线,更适合生产中推广应用。激光焊接实际上已取得了电子束焊接20年前的地位,成为高能束焊接技术发展的主流。
激光加工设备安装同轴吹气装置的目的是(?
同轴吹气装置辅助气体的作用为吹散融化金属,防止透镜污染,冷却作用,另外就是加工辅助,碳钢板切割时吹的一般都为氧气,作用是辅助燃烧,提升切割能力。不锈钢切割时一般都为氮气,作用是可以阻绝空气,形成较亮的切割断面。
激光切割机采用辅助气体的作用是什么?哪位大神知道呀
你说的辅助气体是激光头吹气功能吗?要是的话,这功能主要是为了防止切割材料出现明火、烧焦,因为激光在工作时,温度很高,切割需要的功率又大,必须通过吹气来解决。
激光焊接吹气的作用的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于激光焊接用气吗、激光焊接吹气的作用的信息别忘了在本站进行查找喔。微信号:ymsc_2016
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~