焊接资讯

您现在的位置是:首页 > 焊机信息 > 正文

焊机信息

激光焊接功率和熔深关系(激光焊接的熔深)

工品易达2022-10-16焊机信息12

激光焊接怎样选择正确的激光器

在选择激光焊接光源的时候要充分考虑焊接材料、接头几何形状、速度等因素。

随着激光焊接在制造业中的广泛应用,如何正确选择激光源是制造商需要面临的一个现实问题。目前市场上可选择的激光源有光纤、脉冲Nd:YAG、二极管、碟片还有CO2激光源(CW Nd:YAG激光源基本上已经被光纤和碟式激光器取代了,因此本文没有述及)。选择那一种激光源要充分考虑到各种因素,如焊接的材料、接头几何形状、焊接速度、形位公差、系统集成要求等,当然还要考虑预算。每一种激光源都有其特性,可以满足不同的焊接要求,当然在某些情况下也有可替代性。

◆ CO2激光器 CO2气体激光器,波长为10604nm,功率1~20千瓦,是一种非常成熟的激光器,而且是自上个世纪八十年以来一直是大功率加工的最主要激光源。

◆ 光纤激光器 这种高效的二极管泵浦激光器其实是一种小芯径硅基光纤。激光源出现在光纤内,因此不用进行校正,而且将小芯径光纤映射到聚焦镜上时,焦点尺寸最小可以达到10微米。这种紧凑型的激光器通常以两种配置出现:低功率焊接(小于300W)的单一模式;以及用于大功率焊接的多模式。

◆ 二极管激光器 单发光面器件功率的提高,新冷却通道技术的出现,加上可以将光束聚焦为直径小于1000微米光纤的微光学元件技术的发展,都推进了二极管作为焊接激光器的出现。

◆ 碟式激光器 扁平的Yd:YAG晶体薄盘置于CW激光器的中心——碟式激光器这种设计是为了避免出现棒状激光器的固有问题,而采用了0.01in厚的圆盘,另一面用冷却装置支撑。采用这种设计进行冷却可以使激光器功率达到10kW,同时可以保证光束质量。

◆ 脉冲Nd:YAG激光器 这种激光器采用单一的Nd:YAG激光棒,通过闪光灯激励产生焊接所使用的高峰值和低平均功率。比如,一个相对较低的功率,35W平均功率可以产生6kW的高峰值功率。这种高峰值功率和窄脉宽的结合不仅保证了材料焊接的质量,还为能量输入提供了有效的控制。 按熔深大小选择激光器

激光器的选择按照熔深大小可分为:小于0.01in、0.01~0.03in和大于0.03in。一般来说,可以选择多个激光源来完成焊接,但是出于对性能和预算的考虑,往往只能选择一到两个光源。当然,最后的决定可能还会受其他很多因素影响,比如样品质量、地理因素、售后服务、系统集成商的偏好等,当然可能还会受人缘关系影响。 ◆ 小于0.01in焊缝熔深

主要采用脉冲Nd:YAG激光器,其次是光纤激光器。在考虑部件装配、接头形状、材料和镀层等情况下,需要对整个焊接过程有更好的控制,脉冲Nd:YAG激光器则是最佳的选择。采用高峰值功率可以产生光点尺寸大于1000微米的焊接光束,在选择焊点尺寸时具有较大的灵活性,从而使焊接本身的工艺窗口最大化,同时保证在生产环境中必要的容差。

光纤激光器是该分类中唯一一种连续波激光,因为光纤激光器可以使光束聚焦后的光点尺寸小于25微米,这样就可以获得焊接所需要的高功率密度。为了保证在微加工领域的价格竞争力,光纤激光器功率一般不超过200W,这样也就限制了其最大的光点尺寸,无法提供足够的功率密度,一般焊点尺寸不超过75微米。这是光纤激光器一个最大的限制,这样在实际生产中,按配合公差和叠加公差来调节接头/部件时,往往无法保证±15毫米的误差范围。

光纤激光器主要用于为了保证稳定性对焊点要求很高的厚度较薄材料的搭焊中。光纤激光器采用焦距为150mm的镜头可以产生直径小于25微米的光点,这样给加工带来了足够的操作空间。光纤激光器采用搭焊焊接可以以较高的速度获得熔深达到0.01in甚至高于0.01in的焊缝;200W单模式光纤激光器在高达50in/s速度下可以获得0.004in的熔深。

相比较来说,脉冲Nd:YAG激光器除了薄箔片焊接外在这个区间可以满足所有的应用。该激光器的光点尺寸、脉冲宽度以及峰值功率范围都较大,因此在经过调节和优化后几乎可以满足各种焊接需求。 ◆ 0.01~0.03in焊缝熔深

上面所说的脉冲Nd:YAG激光器和光纤激光器的应用分类在这里依然有效,但是范围较窄。脉冲Nd:YAG激光器用于大多数的点焊加工,而采用约500W功率且光点直径为0.01微米的光纤激光器可以用于低容差的对接焊和角焊中。脉冲Nd:YAG激光器的性价比相对较高,500W和25W功率的激光器可以在不同焊接速度下带来不同的焊缝熔深;峰值功率可以保证熔深性能而平均功率可以保证缝焊的焊接速度。

功率在500~800W之间的二极管激光器可以焊接容差较大的部件,速度一般要比光纤和碟式激光器慢,但是较大的容差可以弥补这一不足。 ◆ 焊缝熔深大于0.03in

所有的激光器都适用于此范围。脉冲Nd:YAG激光器可以达到的熔深约为0.05in,而其他类型的激光器可以达到0.25in,有些甚至超过0.5in。一般来说,该范围内脉冲Nd:YAG激光器所适用的焊接部件都比较小,如采用缝焊的压力传感器等元件。除此之外,在速度和熔深方面,汽车行业基本涵盖了几乎所有的应用范围,光纤、CO2、碟式和二极管激光器都可以选择使用。

寻求平衡

这些激光源最主要的区别是光束质量、亮度和波长。光束质量指的是激光的可聚焦性,亮度指被聚焦光束内的功率密度。举例来说,CO2激光器和光纤激光器的光束质量差不多,这样如果其他参数都一样的话,它们可以聚焦成为直径相同的光点。光纤激光源的波长是CO2光源波长的十分之一,因此光纤激光源可以产生的光点直径就是CO2光源的十分之一;而光纤激光源的光束质量和亮度则更好。

在激光焊接中,熔深和速度是与光束质量和亮度成正比的,而焊接稳定性和容差与光束质量和亮度却没有那么直接的关系。因此,焊接性能和质量以及工艺窗口的宽度之间必须寻求一种平衡。需要知道的是,为了满足实际需求,可以将光束的质量调低,但是无法将较差的光束变好。

在0.25in熔深时,以上几种激光器的焊接速度非常接近;光纤和碟式要比CO2速度快,而二极管要慢于CO2。采用较高功率激光器进行焊接通常需要两班倒的方式,这意味着选择哪一种激光器还与采购激光器的成本有关。虽然CO2激光器拥有大量的用户,而且他们对这种技术也非常熟悉,不过与光纤、碟式和二极管激光器相比,CO2激光器单次焊接的成本要高很多。

激光焊接在熔深需求超过0.25in的焊接应用中与等离子和弧焊相比要更有优势,可以大大减少热变形。热变形的减少可以维持部件的几何形状,这样就不必再对部件几何外形进行重新处理。部件配合在这种厚度下可能会带来问题,可以采用填丝或将激光焊与等离子焊及弧焊相结合的工艺流程。 结论

激光焊接的激光源有很多种,每一种都有其特性,适用于不同的需求。用户要充分了解哪一种激光源最能满足他们的焊接需求,这点非常重要。如果需要焊接系统的话,最好的办法就是与系统供应商合作,他们可以决定最佳的激光器。

此外,还可以与不同的激光器制造商接触,将焊接样品寄给他们,通过这种途径来决定最佳的解决方案。在选择激光器的时候,记住焊接需要在熔深、速度、稳定性、生产部件容纳性以及容差方面做到均衡。

详情请关注尚拓激光官方网站

影响激光焊接质量的原因是什么

影响激光焊接质量的因素很多.其中一些极易波动,具有相当的不稳定性。如何正确设定和控制这些参数,使其在高速连续的激光焊接过程中控制在合适的范围内,以保证焊接质量首先是焊缝成形的可靠性和稳定性,是关系到激光焊接技术实用化、产业化的重要问题。 以板材对接单面焊双面成形工艺为例,影响激光焊接质量的主要因素分焊接设备,工件状况和工艺参数三方面,如图11所示。

图11 影响激光焊接质量的主要因素 1 焊接设备

对激光器的质量要求最主要的是光束模式和输出功率及其稳定性。光束模式是光束质量的主要指标,光束模式阶数越低,光束聚焦性能越好,光斑越小,相同激光功率下功率密度越高,焊缝深宽越大。一般要求基模(TEM00)或低阶模,否则难以满足高质量激光焊接的要求。虽然目前国产激光器在光束质量和功率输出稳定性方面用于激光焊接还有一定困难。但从国外情况来看,激光器的光束质量和输出功率稳定性已相当高,不会成为激光焊接的问题。

光学系统中影响焊接质量最大的因素是聚焦镜,所用焦距一般在127mm(5in)到200mm(7.9in)之间,焦距小对减小聚焦光束腰斑直径有好处,但过小容易在焊接过程中受污染和飞溅损伤。 2.工件状况

激光焊接要求对工件的边缘进行加工,装配有很高的精度,光斑与焊缝严格对中,而且工件原始装配精度和光斑对中情况在焊接过程中不能因焊接热变形而变化。这是因为激光光斑小,焊缝窄,一般不加填充金属,如装配不严间隙过大,光束能穿过间隙不能熔化母材,或者引起明显的咬边、凹陷,如光斑对缝的偏差稍大就有可能造成未熔合或未焊透。所以,一般板材对接装配间隙和光斑对缝偏差均不应大于0.1mm,错边不应大于0.2mm。当焊缝较长时,焊前的准备难度很大,普通剪床F料一般不能满足要求.必须经过机械加工或用高精度剪床剪切,还必须根据具体工件情况设计合适的精密胎夹具。实际生产中,有时因不能满足这些要求,而无法采用激光焊接技术。 3.焊接参数

(1)对激光焊接模式和焊缝成形稳定件的影响焊接参数中最主要的是激光光斑的功率密度,它对焊接模式和焊缝成形稳定性影响如下:随激光光斑功率密度由小变大依次为稳定热导焊、模式不稳定焊和稳定深熔焊[1][2],其产生条件和焊缝成形特征如表2所示。 表2 三种激光焊接过程的基本特征

焊接过程 稳定热导焊(HCW) 模式不稳定焊(UMW) 稳定深熔焊(DPW) 产生条件 低功率密度 功率密度介于HCW和DPW之间 高功率密度 焊接模式 热导焊 热导焊和深熔焊随机出现 深熔焊

小孔特点 不形成小孔 小孔间断性地产生和消失 小孔稳定存在

等离子体特点 不产生等离子体 等离子体间断性地产生和消失 稳定的等离子体 焊缝成形特征 熔深和熔宽均很小的近半圆形焊缝 焊缝成形极不狗宝,熔深和熔宽在大小两给跳变 熔深较大的指状焊缝

激光光斑的功率密度,在光束模式和聚焦镜焦距一定的情况下,主要由激光功率和光束焦

点位置决定。激光功率密度与激光功率成正比。而焦点位置的影响则存在一个最佳值;当光束焦点处于工件表面下某一位置(1~2mm范围内,依板厚和参数而异)时,即可获得最理想的焊缝。偏离这个最佳焦点位置,工件表面光斑即变大,引起功率密度变小,到一定范围,就会引起焊接过程形式的变化。

焊接速度对焊接过程形式和稳定件的影响不如激光功率和焦点位置那样显著,只有焊接速度太大时,由于热输入过小而出现无法维持稳定深熔焊过程的情况。

实际焊接时,应根据焊件对熔深的要求选择稳定深熔焊或稳定热导焊,而要绝对避免模式不稳定焊。

(2)在深熔焊范围内,焊接参数对熔深的影响1][3] 在稳定深熔焊范围内,激光功率越高,熔深越大,约为0.7次方的关系;而焊接速变越高,熔深越浅。在一定激光功率和焊接速度条件下焦点处于最佳位置时熔深最大,偏离这个位置,熔深则下降,甚至变为模式不稳定焊接或稳定热导焊。

(3)保护气体的影响 保护气体通常采用氩气或氦气.它们产生等离子体的倾向显著 不同:氦气因其电离电体高,导热快.在同样条件下,比氩气产生等离子体的倾向小,因而可获得更大的熔深。

在一定范围内,随着保护气体流量的增加,抑制等离子体的倾向增大,因而熔深增加,但增至一定范围即趋于平稳。

(4)各参数的可监控性分析在四种焊接参数中,焊接速度和保护气体流量属于容易监控和保持稳定的参数,而激光功率和焦点位置则是焊接过程中可能发生波动而难于监控的参数。

虽然从激光器输出的激光功率稳定性很高且容易监控,但由于有导光和聚焦系统的损耗,到达工件的激光功率会发生变化,而这种损耗与光学工件的质量、使用时间及表面污染情况有关,故不易监测,成为焊接质量的不确定因素。

[img]

激光焊接机的激光焊接机参数

激光焊接机参数调整方法如下:

激光脉冲宽度:

激光脉冲宽度是激光焊接机在焊接过程的一个重要参数,激光脉宽,决定着焊接物的焊接宽度和深度,激光脉宽的设置影响着焊接的效果;脉宽越长热影响区越大,熔深是随脉宽的1/2次方增加。其实对于每种材料,都有一个可使熔深达到最大的最佳脉冲宽度。

激光功率密度:

激光功率密度是激光加工中最关键的参数之一。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高;因此功率密度越高,工件表层加热至沸点越快,采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。

激光脉冲波形:

激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有40~70%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大,是以,不合的金属对于激光的反射率和激光的应用率都不一样,要进行有效的焊接就必须输入不合波形的激光,如许焊缝处的金属组织才能在最佳的方法结晶,形成与基体金属一致的组织,才能形成高质量的焊缝。在实际焊接中可针对不同材料的焊接特性,灵活调整脉冲波形。如对于易脆材料可以采用能量缓慢降低的脉冲波形,减慢冷淬速度。

 激光焊接机的参数设置调整主要是对激光脉冲宽度,激光功率密度,激光脉冲波形的设置调整,对应不同的焊接材料,激光焊接机的参数都是有不同的调试数据。激光焊接机的参数设置调整主要是你这三大要点,用户可根据焊接材料自行调整激光焊接机参数。

熔深的影响

激光焊接体能量及其对焊缝熔深的影响

激光焊接,特别是激光深熔焊接是一个非常复杂的物理化学过程,涉及到激光—材料—等离子体之间的相互作用。但是在激光焊接过程中影响并决定焊缝熔深等焊缝成型状况的是激光功率、焊接速度、离焦量及焦点尺寸等焊接规范参数,其中离焦量(在激光焊接中,一般用离焦量来表征激光光斑及焦点尺寸)是焊缝熔深的重要影响因素之一。

在电弧焊中,人们常采用焊接线能量或热输入(二者的单位均为J·m-1)来描述和评价焊接过程中电弧电压、焊接电流和焊接速度等焊接规范参数对焊缝熔深的影响,但是这两个参数都没有考虑电弧作用面积对焊缝熔深的影响。

如果用电弧焊中的焊接线能量或热输入来综合评价激光焊接过程中焊接规范参数对焊缝熔深的影响,则不能反映离焦量及焦点尺寸对焊缝熔深的影响。若考虑离焦量的影响,用热输入来评价激光焊接过程中焊接规范参数对焊缝熔深的影响,则容易和电弧焊中的热输入在物理意义上混淆。

目前,在激光焊接的研究中,还没有一个参数能够综合体现焊接规范参数对焊接过程的影响。为了综合评价激光焊接过程中焊接规范参数对焊缝熔深的影响以及区别电弧焊中的热输入,本文定义了焊接体能量,并研究了Nd:YAG激光深熔焊接过程中焊接体能量对焊缝熔深的影响。

1. 焊接体能量的定义

为了能够综合评价激光功率、焊接速度、激光辐照面积(离焦量)以及焦点尺寸等焊接规范参数对焊缝熔深的影响,引入焊接体能量的概念,并将焊接体能量qV的定义为:

(1)

式中:Q——激光功率;

V——焊接速度。

S——为辐照在小孔内的激光束光斑面积,实验用的Nd:YAG激光器经焦距为200mm的透镜输出的激光光斑面积与离焦量关系的拟合关系式为[1]:

式中:?z——离焦量;

R0——激光束焦点半径。

因此,焊接体能量又可以表示为:

从焊接体能量的定义中可以看出,焊接体能量的物理意义为单位时间内的激光功率密度或单位面积内的焊接线能量,其单位为J·m-3,不同于电弧焊中焊接线能量和热输入的物理意义和单位J·m-1。

从焊接体能量的定义可以看出,焊接体能量可由激光功率、焊接速度、及离焦量及激光束焦点半径计算得出。图1为焊接体能量随激光功率、焊接速度和离焦量等焊接规范参数的变化。从焊接体能量的定义及图1中可以看出,焊接体能量与激光功率成正比关系,与焊接速度成反比关系,与焦点尺寸成平方关系,而与离焦量成指数关系。焊接体能量的变化能够体现激光功率、焊接速度、离焦量等焊接规范参数的变化。

2. 焊接体能量对焊缝熔深的影响

2.1 试验条件

实验用的激光器为额定功率为2kW的Nd:YAG固体激光器,输出波长为1.06μm的连续波激光,激光束由内径为0.6mm的光纤传输,经焦距为200mm的透镜聚焦输出激光束焦点半径为0.3mm,工件为250×100×1.8mm的Q235钢板,同轴保护气为Ar气。

(a)激光功率(b)焊接速度

(c)离焦量

图1焊接体能量随焊接规范参数的变化

本文的主要目的在于研究焊接体能量对焊缝熔深的影响,因此为了减少接头形式及其尺寸等因素的影响,实验采用Nd:YAG激光平板堆焊,深熔焊接模式,并且只测量工件未焊透时的焊缝熔深。

通过激光功率、焊接速度、离焦量的离散变化实现了焊接体能量的变化。实验过程中的焊接规范参数变化如表1所示。

2.2 焊接体能量对焊缝熔深的影响

在焊接体能量的定义(1)式和(3)式中,焊接速度表征了激光束对小孔辐照时间的长短,而Q/S或则表明了辐照在孔内的激光功率密度的大小。因此,辐照在小孔孔内的焊接体能量从激光辐照时间和功率密度两方面影响、决定着小孔深度和焊缝熔深。由于孔底液态金属层的厚度很小[1-3],其对焊缝熔深的影响很小,因而在激光深熔焊接研究中,人们通常将焊缝熔深视作小孔深度来处理。

表1焊接规范参数的变化

图2为在激光功率、焊接速度及离焦量变化时焊缝熔深随焊接体能量的变化。

(a)激光功率(b)焊接速度

(c)离焦量

图2焊接规范参数变化时焊接体能量对焊缝熔深的影响

焊接体能量与激光功率呈正比,激光功率密度随着激光功率增大而增大,焊接体能量也随之增大。因而在单位时间内将有更多的激光束能量辐照到小孔底部,激光束对孔底的辐照加热作用增强,孔底蒸发的材料越多,焊缝熔深也就越深。如图2a所示。

焊接体能量与焊接速度呈反比关系,随着焊接速度的加快,激光束对小孔的辐照时间越短,辐照在小孔内的焊接体能量就越小,则孔底蒸发的材料就越少,焊缝熔深就越浅。如图2b所示。

焊接体能量与离焦量呈指数关系,且在理论上关于?z=0mm对称(在实际焊接过程中,由于激光束焦点位置的漂移,使焊接体能量并不关于?z=0mm对称,而是向入焦方向偏移了一定距离,本文中试验中激光束焦点位置的偏移为入焦1mm)。在离焦量变化过程中,随着激光束焦点到工件上表面距离的减小,辐照在小孔内的激光光斑就越小,激光功率密度就越大,焊接体能量也就越大,

对孔底材料的轰击也就越强,孔底蒸发的材料也就越多,焊缝熔深也就越深。如图2c所示。

从上面的分析及图2中可知,焊缝熔深随焊接体能量的变化而近似呈线性变化。焊接体能量越大,则单位时间、单位面积内工件材料接受的激光束辐照的能量越多,蒸发的材料也就越多,从而小孔深度和焊缝熔深也就越深。

从焊接体能量的定义及图1、图2中可以看出,焊接体能量综合了激光功率、焊接速度及离焦量等焊接规范参数对焊缝熔深的影响。

此外,从焊接体能量的定义(3)式中还可以看出,焊接体能量与激光束焦点半径成平方关系,能够体现激光束焦点大小对焊缝熔深的影响。激光束焦点尺寸越小,焊接体能量就越大,也就可以获得更深的焊缝熔深。或者说,在一定的焊接体能量下,获得一定深度的焊缝熔深,如果所用激光束焦点越小,则所需要的激光功率也就越小。因此,可采用强聚焦的方法减小激光束焦点尺寸,从而达到增加熔深或减小激光器输出功率的目的,这一点已被国外有关研究成果所证明[4]。

3. 结论

(1)定义激光焊接体能量,其由激光功率、焊接速度及离焦量计算得到。

(2)焊接体能量与激光功率呈正比、焊接速度呈反比、离焦量呈指数关系,激光束焦点尺寸越小,焊接体能量越大。

(3)焊缝熔深随着焊接体能量的增大而近似呈线性增大。焊接体能量能够综合体现焊接规范参数对焊缝熔深的影响。

影响激光焊接性能的因素有哪些

影响激光焊接质量的因素有哪些:

一、焊接工艺参数

影响激光焊接质量的焊接工艺参数主要包含:激光功率 焊接速度、

透镜焦距,聚焦位置,保护气体等。激光功率和焊接速度是影响焊接质量的最主要参数,焊接厚度取决于激光功率,约为功率(KW)的0.7次方,通常功率增大,焊接深度增加;速度增加,熔深变浅,焊缝和热影响区变窄,生产率增高。

二、焊接工装夹具

在激光焊接的过程当中,焊接工装夹具主要是将焊接工件准确定位和可靠夹紧,便于焊接工件进行装配和焊接,保证焊接结构精度,有效的防止和减轻焊接热变形。

三、焊接的设备

金密激光焊接机通常由激光器、导光和聚焦系统组成.这些系统对于激光焊接的质量而言都是有一定影响的。用于焊接的激光器主要有脉冲激光器和连续激光器,最重要的性能是输出功率和光束质量.焊接对激光器的质量要求最主要的是光束模式和输出功率的稳定性.光束模式阶数越低,光束的聚焦性能越好,光斑越小,相同激光功率下激光功率密度越高,焊接深宽比越大.激光器的输出功率稳定性越好,焊接一致性就越好。

而导光和聚焦系统主要由光纤,准直(扩束)镜、反射镜和聚焦镜组成,实现传输光束和聚焦的功能.这些光学零件,在大功率激光作用下,性能可能会劣化使透过率下降,产生热透镜效应(透镜受热膨胀焦距发生变化)。如有表面污染,则会增加传输损耗甚至可能导致光学零件的损坏,所以光学零件的质量,维护和工作状态监测对保证焊接质量至关重要。

四、工件状态

金密激光焊接工件的加工精度、装配精度以及清洁程度因为激光光斑小,焊缝窄,一般不加填充金属,如装配不严间隙过大,光束会穿过间隙不能熔化母材,或者引起明显的咬边,凹陷.所以一股板材对接装配间隙和光斑对缝偏差均不应大于0.1mm,错边不应大于0.2mm.当然对焊接质量要求更高的工件,其焊接工件的加工精度及装配精度也更高,尤其是焊接前的人工装配,要保证焊接位置的高低差,装配间隙和加工件的清洁程度。

而材料的均匀性是指物质的一种或几种特性具有同组分或相同结构的状态材料的均匀性直接影响到材料的有效使用。影响材料均匀性的因素有合金成分的分布、材料厚度等,合金元素的种类和含量本身就对焊接质量存在影响,其分布的均匀性直接影响到焊缝的一致性。例如铝合金材料焊接时,合金元素的分布不均匀,或者内部存在杂质的含量不同,容易出现焊接缺陷:炸孔、

咬边及凹陷。

结合以上几点来分析,要在高速连续的激光焊接过程中,并在合遁的范围内,保证焊接质量,如焊缝成形的可靠性和稳定性,确保焊接质量,一方面需采用光束质量和激光输出功率稳定性好的激光器和采用高质量、高稳定性的光学元件组成其导光聚焦系统,并经常维护,防止污染,保持清洁,并适当对工件进行预处理;另一方面要确保工件的加工精度和装配精度,并且针对不同的加工材料分别设定不同的激光加工参数,选择合适的激光功率,焊接速度、激光波形,离焦星和保护气体,根据不同焊接效果优化加工参数,提高激光焊接质星的可隼性和稳定性。

激光焊接机功率与各参数有什么关系

激光平均功率:实际输出的激光功率,大约等于注入平均电功率的2-3%。 

脉冲宽度:单个脉冲的时间。 

脉冲频率:每秒钟内激光脉冲重复的次数。 

激光峰值功率:激光在实际出光时的瞬间功率,激光峰值功率等于平均功率除以占空比。一般是几个千瓦的数量级。 

激光脉冲能量:指单个脉冲所输出的能量。由储能电容容量、电压和氙灯决定。这是激光焊接机一个重要的指标,在点焊的时候,单点能量的稳定性对激光焊接的质量影响很大.

关于激光焊接功率和熔深关系和激光焊接的熔深的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~