焊接资讯

您现在的位置是:首页 > 焊机信息 > 正文

焊机信息

激光焊接焊缝标准(激光焊接焊缝标准规范)

工品易达2022-10-27焊机信息6

激光焊接技术的工艺参数

连续CO2激光焊的工艺参数  厚度/mm 焊速/(cm/s) 缝宽/mm 深宽比 功率/kw 对接焊缝 321不锈钢(1Cr18Ni9Ti) 0.13 3.81 0.45 全焊透 5 0.25 1.48 0.71 全焊透 5 0.42 0.47 0.76 部分焊透 55 17-7不锈钢(0Cr7Ni7A1) 0.13 4.65 0.45 全焊透 5 302不锈钢(1Cr18Ni9) 0.13 2.12 0.50 全焊透 5 0.20 1.27 0.50 全焊透 5 0.25 0.42 1.00 全焊透 5 6.35 2.14 0.80 7 3.5 8.9 1.27 1.00 3 8 12.7 0.42 1.00 5 20 20.3 21.1 1.00 5 20 6.35 8.47 —— 3.5 16 因康镍合金600 0.10 6.35 0.25 全焊透 5 0.25 1.69 0.45 全焊透 5 镍合金200 0.13 1.48 0.45 全焊透 5 蒙乃尔合金400 0.25 0.60 0.60 全焊透 5 工业纯钛 0.13 5.92 0.38 全焊透 5 0.25 2.12 0.55 全焊透 5 低碳钢 1.19 0.32 —— 0.63 0.65 搭接焊缝 镀锡钢 0.30 0.85 0.76 全焊透 5 302不锈钢(1Cr18Ni9) 0.40 7.45 0.76 部分焊透 5 0.76 1.27 0.60 部分焊透 5 0.25 0.60 0.60 全焊透 5 角缝焊 321不锈钢(1Cr18Ni9Ti) 0.25 0.85 —— —— 5 端接焊缝 321不锈钢(1Cr18Ni9Ti) 0.13 3.60 —— —— 5 0.25 1.06 —— —— 5 0.42 1.90 —— —— 5 17-7不锈钢(0Cr17Ni7A1) 0.13 3.60 —— —— 5 因康镍合金600 0.10 1.06 —— —— 5 0.25 0.60 —— —— 5 0.42 0.76 —— —— 5 镍合金200 0.18 1.06 —— —— 5 蒙乃尔合金400 0.25 激光深熔焊接的主要工艺参数 激光焊接过程常使用惰性气体来保护熔池,当某些材料焊接可不计较表面氧化时则也可不考虑保护,但对大多数应用场合则常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。氦气不易电离(电离能量较高),可让激光顺利通过,光束能量不受阻碍地直达工件表面。这是激光焊接时使用最有效的保护气体,但价格比较贵。氩气比较便宜,密度较大,所以保护效果较好。但它易受高温金属等离子体电离,结果屏蔽了部分光束射向工件,减少了焊接的有效激光功率,也损害焊接速度与熔深。使用氩气保护的焊件表面要比使用氦气保护时来得光滑。氮气作为保护气体最便宜,但对某些类型不锈钢焊接时并不适用,主要是由于冶金学方面问题,如吸收,有时会在搭接区产生气孔。使用保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射。特别在高功率激光焊接时,由于其喷出物变得非常有力,此时保护透镜则更为必要。保护气体的第三个作用是对驱散高功率激光焊接产生的等离子屏蔽很有效。金属蒸气吸收激光束电离成等离子云,金属蒸气周围的保护气体也会因受热而电离。如果等离子体存在过多,激光束在某种程度上被等离子体消耗。等离子体作为第二种能量存在于工作表面,使得熔深变浅、焊接熔池表面变宽。通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。中性原子越轻,碰撞频率越高,复合速率越高;另一方面,只有电离能高的保护气体,才不致因气体本身的电离而增加电子密度。表  常用气体和金属的原子(分子)量和电离能

材料 氦 氩 氮 铝 镁 铁原子(分子)量 4 40 28 27 24 56电离能(eV) 24.46 15.68 14.5 5.96 7.61 7.83从表可知,等离子体云尺寸与采用的保护气体不同而变化,氦气最小,氮气次之,使用氩气时最大。等离子体尺寸越大,熔深则越浅。造成这种差别的原因首先由于气体分子的电离程度不同,另外也由于保护气体不同密度引起金属蒸气扩散差别。氦气电离最小,密度最小,它能很快地驱除从金属熔池产生的上升的金属蒸气。所以用氦作保护气体,可最大程度地抑制等离子体,从而增加熔深,提高焊接速度;由于质轻而能逸出,不易造成气孔。当然,从我们实际焊接的效果看,用氩气保护的效果还不错。等离子云对熔深的影响在低焊接速度区最为明显。当焊接速度提高时,它的影响就会减弱。保护气体是通过喷嘴口以一定的压力射出到达工件表面的,喷嘴的流体力学形状和出口的直径大小十分重要。它必须以足够大以驱使喷出的保护气体覆盖焊接表面,但为了有效保护透镜,阻止金属蒸气污染或金属飞溅损伤透镜,喷口大小也要加以限制。流量也要加以控制,否则保护气的层流变成紊流,大气卷入熔池,最终形成气孔。为了提高保护效果,还可用附加的侧向吹气的方式,即通过一较小直径的喷管将保护气体以一定的角度直接射入深熔焊接的小孔。保护气体不仅抑制了工件表面的等离子体云,而且对孔内的等离子体及小孔的形成施加影响,熔深进一步增大,获得深宽比较为理想的焊缝。但是,此种方法要求精确控制气流量大小、方向,否则容易产生紊流而破坏熔池,导致焊接过程难以稳定。 焊接起始、终止点的激光功率渐升、渐降控制

激光深熔焊接时,不管焊缝深浅,小孔现象始终存在。当焊接过程终止、关闭功率开关时,焊缝尾端将出现凹坑。另外,当激光焊层覆盖原先焊缝时,会出现对激光束过度吸收,导致焊件过热或产生气孔。为了防止上述现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率用电子学方法在一个短时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。

柯米克的激光焊接长度是多少?

柯米克的激光焊接长度是5914mm。

激光焊接相比传统焊接强度提升了50%之多。

焊光束的焦点直径只有0.6mm,

每条激光焊焊缝的宽度只有大约1~1.5mm。

激光焊接机的焊接深度是多少?

激光焊接机的深度可以达到7mm,牢固度可以根据你的需要来达到的,想要更牢固就需要激光焊接机参数和焊接面调整好

激光焊接质量可以用什么指标来衡量

激光焊缝质量的检验及返工标准判定激光焊缝的质量好坏一般分为非破坏性检验和破坏性检验。

1)非破坏性检验:激光焊缝非破坏性检验主要是目视检验。检验者采用一些适宜的工具如放大镜、相机、或其它测量检验工具对焊缝的存在、数量、长度、外观及位置按照图纸要求进行检查。在上面提到的激光焊接质量缺陷中,气孔、焊接飞溅、焊穿、中断的焊缝、边缘熔接等问题都是可以通过目视检验出来。在汽车白车身生产过程中要求对每一条焊缝都进行目视检验来评判它的质量。

2)破坏性检验:激光焊缝的破坏性检验分金相试验和凿击检验两种。

 

 1

金相试验是通过显微镜对激光焊缝的横断面磨片进行判定的一种检验方法。常见的缺陷一般为无连接、边缘缺口、根部突起等。检验的频次取决于工艺的可靠性,实

际生产中由生产部门和各主管的质保部门协商确认,每月至少一次。对由于设备故障或质量缺陷对激光参数进行调整后,必须对焊缝做金相试验评定。

 

 2

凿击检验是借助凿子,使激光焊缝受力凿打直至出现断裂,然后测量断裂面(焊缝的长度和宽度)的一种检验方法。凿击检验能反映出激光焊接设备的功能可靠性,

所以凿击检验一般在离生产线很近的地方进行,当焊缝被发现有不合格时,就可以通知相应工艺和维修人员。在汽车白车身生产中对所有激光焊缝以2次/月的频次

检验。

3)返工方法:对通过上述各种检验方法发现缺陷的激光焊缝,需进行返工。一般汽车白车身激光焊接返工方法如下:

1 电阻点焊,但电阻点焊要求有较高的接触位置或法兰边宽度,而且在这种情况下不允许焊点在激光焊缝上、点焊的焊点与激光焊缝连接在一起。当零件法兰边很短的情况下(8mm)或不能钻孔时,可在搭接处用MIG焊。

2 当搭接接头成角焊缝时可使用MIG、MAG焊接。

3 重新进行激光焊接,但新焊缝不允许焊在有缺陷的焊缝上,而只能焊在焊缝之间的空缺处,返工焊缝长度应与焊缝缺陷位置的长度相同。

激光拼焊对拼焊处一般要求是怎样的?

激光拼焊对拼焊处的要求:

1.表面粗糙度

表面粗糙度作为冷轧钢板加工过程中的最重要技术控制参数之一,它主要影响着钢板与模具之间的摩擦因数、储油条件及钢板冲压时的成形性能等方面,而对这些性能的影响最终又会体现到钢板的实际冲压效。按照GB/T

2325-2012要求检测激光拼焊板的表面粗糙度在0.8μm~0.9μm,得到的数值基本一致且符合入厂检验要求。

2. 力学性能

按照GB/T

228.1-2010的方法对两种厚度的钢板进行力学性能检测,材料的屈强比都保持在0.5以内,其它各项指标都在标准范围之内,满足入厂检验要求,检测结果见表1。

3. 焊缝杯突试验

为了验证拼焊板的焊缝强度及失效模式,随机抽取三张激光拼焊板进行杯突试验,结果表明三张激光拼焊板都是在薄板热影响区以外发生开裂,并且开裂方向平行于焊缝,符合使用要求。

4.仿真分析

在前期设计阶段应用AUTOFORM对新造型车门内板的冲压工艺进行仿真分析,对预判实际工艺可行性起着至关重要的作用。将车门内板数模导入AUTOFORM

当中并输入现有生产工艺条件,模拟钢板的拉延过程,结果发现激光拼焊板焊缝位置存在危险点,材料减薄过度存在开裂的风险与零件开裂位置基本一致.

在AUTOFORM当中对现有工艺进行了四方面的调整,分别是对小鼓包进行打磨以降低其高度、对工艺补充面进行打磨以降低其高度、降低厚料部分拉延筋高度和减少钢板尺寸,最终将厚料部分拉延筋高度从0.35降低为0.2后对危险区域改善明显。在模具上根据仿真数据的调整结果将拉延筋高度进行调整为0.25使厚侧母材更好地向凹模内流动,最终消除开裂现象。目前此畅销车型年产量大15万量,开裂比例保持在千分之三以内,完全满足现有生产条件。

关于激光焊接焊缝标准和激光焊接焊缝标准规范的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~