激光焊接技术(激光焊接技术的发展趋势)
激光焊接到底是什么?
激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于10~10 W/cm为热传导焊,此时熔深浅、焊接速度慢;功率密度大于10~10 W/cm时,金属表面受热作用下凹成"孔穴",形成深熔焊,具有焊接速度快、深宽比大的特点。激光焊接技术广泛被应运在汽车、轮船、飞机、高铁等高精制造领域,给人们的生活质量带来了重大提升,更是引领家电行业进入了精工时代。特别是在大众汽车创造的42米无缝焊接技术,大大提高了车身整体性和稳定性之后,家电领头企业海尔集团隆重推出首款采用激光无缝焊接技术生产的洗衣机,先进的激光技术可以为人民的生活带来巨大的改变。
激光电焊优缺点
激光电焊优缺点
激光电焊优缺点,激光焊接是激光材料加工技术应用的重要方面之一, 激光焊是一种以聚焦的激光束作为能源轰击焊件所产生的热量进行焊接的方法,以下为大家分享激光电焊优缺点。
激光电焊优缺点1
激光焊的优缺点
优点:
(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。
(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。
(3)不需使用电极,没有电极污染或受损的顾虑。且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。
(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。
(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。
(6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件,
(7)可焊材质种类范围大,亦可相互接合各种异质材料。
(8)易于以自动化进行高速焊接,亦可以数位或电脑控制。
(9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。
(10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件。
(11)可焊接不同物性(如不同电阻)的两种金属
(12)不需真空,亦不需做X射线防护。
(13)若以穿孔式焊接,焊道深一宽比可达10:1
(14)可以切换装置将激光束传送至多个工作站。
缺点:
(1)焊件位置需非常精确,务必在激光束的聚焦范围内。
(2)焊件需使用夹治具时,必须确保焊件的最终位置需与激光束将冲击的焊点对准。
(3)最大可焊厚度受到限制渗透厚度远超过19mm的工件,生产线上不适合使用激光焊接。
(4)高反射性及高导热性材料如铝、铜及其合金等,焊接性会受激光所改变。
(5)当进行中能量至高能量的激光束焊接时,需使用等离子控制器将熔池周围的离子化气体驱除,以确保焊道的再出现。
(6)能量转换效率太低,通常低于10%。
(7)焊道快速凝固,可能有气孔及脆化的顾虑。
(8)设备昂贵。
激光电焊优缺点2
激光焊接的好处优点
① 采用激光焊接可以获得高质量的接头强度和较大的深宽比,且焊接速度比较快。
② 由于激光焊接不需真空环境, 因此通过透镜及光纤, 可以实现远程控制与自动化生产。
③ 激光具有较大的功率密度, 对难焊材料如钛、石英等有较好的焊接效果,并能对不同性能材料施焊。
④ 可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。
激光焊接的缺点
① 激光器及焊接系统各配件的价格较为昂贵, 因此初期投资及维护成本比传统焊接工艺高,经济效益较差。
② 由于固体材料对激光的吸收率较低, 特别是在出现等离子体后(等离子体对激光具有吸收作用) , 因此激光焊接的转化效率普遍较低(通常为5%~30%) 。
③ 由于激光焊接的聚焦光斑较小,对工件接头的装备精度要求较高, 很小的装备偏差就会产生较大的加工误差。
激光焊接对人有害吗?
焊接机发出的激光的不可见性和能量太高,非专业人员别去接触激光源,否则很危险。另外激光也属于电磁波,但是焊机用的激光波长都很大,所以没有紫外线之类短波长光波的辐射危害。
焊接过程中会产生许多气体,但大多是惰性气体,没啥毒性,但也要看焊接材料的不同区别对待,最好做好防护措施,减少气体吸入。
焊接机发出的激光几乎没有辐射危害,但是焊接过程中会有电离辐射和受激辐射,最好在焊接过程中远离焊接部位。这种被诱发的辐射这种不乏短波,而且对眼睛,身体影响不小,最好远离焊点。近距离作业要尽量做好防护措施如佩戴呼吸护具,穿辐射防护服,带眼罩。
激光电焊优缺点3
激光焊接与其它焊接技术相比,激光焊接的主要优点是:
1、速度快、深度大、变形小。
2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。
3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。
4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。
5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的`组焊中。(最小光斑可以到0.1mm)
6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,及光纤连续激光器的普及使激光焊接技术获得了更为广泛的推广和应用,更便于自动化集成。
7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。
但是,激光焊接也存在着一定的局限性:
1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。
2、激光器及其相关系统的成本较高,一次性投资较大。
激光焊接原理:
激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。
在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子体形成等。
然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。
为此,必须了解激光与金属相互作用中所产
生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。
激光焊接的工艺参数
1、功率密度
功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。
因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。
对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。
因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。
2、激光脉冲波形
激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。
当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。
在一个激光脉冲作用期间内,金属反射率的变化很大。
3、激光脉冲宽度
脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。
4、离焦量对焊接质量的影响
激光焊接通常需要一定的离做文章,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。
激光焊接技术是如何焊接的?
激光焊接技术是激光加工技术中的重要部分,它是一种高能束的热传导性技术。与传统的焊接工艺相比,激光焊接技术更加快捷方便,同时焊接的质量和稳定性更高,工件产生变形的可能也小,因此被大量投入工业生产。
激光焊接技术主要是利用抛物镜或者凸透镜汇集周围的热量,这时的激光就是一个高温度的热源,将其应用于工件接缝的表面,能够起到焊接的作用。根据工件的不同,激光焊接的方式也有所不同,常用的激光焊接方式是传导焊接和小孔焊接两种。
在航天航空工业中,经常会利用激光焊接技术来进行工件的修复;在汽车制造领域,激光焊接技术被广泛应用于散热器、传动轴等零部件的制造中。随着激光加工技术的不断发展,激光焊接技术的应用领域必然还会扩大。
2.3 搅拌摩擦焊接技术
搅拌摩擦焊接技术,顾名思义就是利用摩擦力产生的热量进行焊接,这就决定了它的使用范围,即低熔点的金属焊接。这种焊接技术的自动化水平更高,接头的质量和稳定性更好,并且节能低碳。
在进行搅拌摩擦焊接过程中,会将一个搅拌针插进焊缝中,利用摩擦力对金属进行加热,让其呈现一种塑性状态,同时金属会形成旋转的空洞,随着搅拌针的不断前移,旋转空洞和塑
62形金属各自向相反的方向移动,金属在冷却之后,焊接的缝隙密度会更高。
搅拌焊接技术主要用于造船业、航空航天业、建筑业、交通工具等领域。在造船业中,它主要被用来焊接甲板上、船头上的部件;在航空航天业中,飞机的机身、油箱都会用到它;而交通工具领域,火车、高速列车等的车身、交换器等都要用搅拌摩擦焊旱季技术。
2.4 电渣焊接技术
电渣焊接技术是一种利用电阻热进行焊接的技术。它能够一次性焊接钢材、铁基金属等质地较厚的工件,同时生产成本也较低,焊接质量较高。
电渣焊接技术依据的原理是:把电热组作为一种热源,用来熔化金属和木材,之后冷却凝固,使各金属原子之间相互连接。常用的电渣焊技术主要有熔嘴、非熔嘴电渣焊技术,丝极电渣焊技术,板级电渣焊技术等。
电渣焊技术主要被应用于一些特殊的地方或行业,比如铁路各个站点的焊接;鼓风炉壳等厚壁容器的焊接等等。
2.5 等离子弧焊接技术
等离子弧焊接技术是一种基于等离子弧切割工业的新型焊接技术。它是一种较为及其精密的焊接技术。
等离子弧焊接技术准确地说应该是“压缩电弧焊接”,它是焊炬将整个电弧进行最大限度的压缩,促使其中的等离子效应加剧,之后电弧就变成了一个具有稳定性、单向性的强大射流热源,温度高达 16000K~33000K,然后可以直接进行金属的焊接。通常企业较为常用的等离子弧主要是转移型的和非转移型两种。
激光焊接效果怎样,实用性和经济性优缺点?
激光焊接在这个社会运用很广,极大程度的帮企业或者个体提升了效益,
激光焊接与其它焊接技术相比,激光焊接的主要优点是:
1、速度快、深度大、变形小。
2、能在室温或特殊条件下进行焊接,焊接设备装置简单。
3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。
4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。
5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。(最小光斑可以到0.1mm)
6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。
7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。
但是,激光焊接也存在着一定的局限性:
1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。
2、激光器及其相关系统的成本较高,一次性投资较大。
激光焊接原理:
激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。
在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子体形成等。
然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。
为此,必须了解激光与金属相互作用中所产
生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。
激光焊接有哪些优点
激光焊接有哪些优点
激光焊接有哪些优点,相信大家在生活中都会见过很多的焊接方法,那么大家也多多少少了解过激光焊接在生活中的作用,其实激光焊接不仅是偶遇很多的作用,而且对比普通的焊技术还有很多的优点,那么激光焊接有哪些优点?
激光焊接有哪些优点1
激光焊接与其它焊接技术相比,激光焊接的主要优点是:
1、速度快、深度大、变形小。
2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。
3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。
4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。
5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。(最小光斑可以到0、1mm)
6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,及光纤连续激光器的普及使激光焊接技术获得了更为广泛的推广和应用,更便于自动化集成。
7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。
但是,激光焊接也存在着一定的局限性:
1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。
2、激光器及其相关系统的成本较高,一次性投资较大。
激光焊接有哪些优点2
1、激光光束质量好
激光聚焦后,功率密度高。高功率低阶模激光聚焦后,焦斑直径小。
2、激光焊接速度快,深度大,变形小。
由于功率密度高,在激光焊接过程中在金属材料中形成小孔,激光能量通过小孔传递到工件深部,横向扩散较少。因此,激光束扫描过程中材料融合深度较大。速度快,单位时间焊接面积大。
3、激光焊接特别适用于焊接精密敏感零件
由于激光焊接机焊接纵横比大,比能量小,热影响区小,焊接变形小,特别适用于焊接精密和热敏零件,可消除焊后修正和二次加工。
4、激光焊接机灵活性高
激光焊接机可实现任意角度焊接,可焊接难以接近的部位;可焊接各种复杂的焊接工件和形状不规则的大型工件。实现任意角度焊接具有很大的灵活性。
5、激光焊接可以焊接难焊接的.材料
激光焊接不仅可用于多种异质金属材料之间的焊接,还可用于钛、镍、锌、铜、铝、铬、铌、金、银等金属及其合金、钢、可伐合金等。合金材料之间的焊接。
6、激光焊接机人工成本低
由于激光焊接时的热输入极低,焊后变形量很小,可以达到表面非常漂亮的焊接效果,因此激光焊接的后续处理很少,可以大大减少或消除巨大的抛光和整平工序上的人工。
7、激光焊接机操作简单
激光焊接机焊接设备简单,操作过程简单易学,上手容易。对工作人员的专业性要求不高,节省人工成本。
8、激光焊接机安全性能强
高安全焊嘴只有在接触金属时才触动开关才有效,并且触摸开关具有体温感应。
专用激光发生器在操作时有安全注意事项,操作时需佩戴激光发生器防护眼镜,以减少对眼睛的伤害。
9、激光焊接机的工作环境多种多样
激光焊接机可用于各种复杂的工作环境,可在常温或特殊条件下进行焊接。例如,激光焊接在很多方面都类似于电子束焊接。其焊接质量略逊于电子束焊接,但电子束只能在真空中传输,因此焊接只能在真空中进行,而激光焊接技术可以更先进。用于广泛的工作环境。
10、焊接系统高度灵活,易于实现自动化。
但是,激光焊接机也有一定的局限性。由于激光假期相关系统成本较高,一次性投资成本会更高。此外,激光焊接机还要求焊件安装精度高,要求光源在商品工件上的位置不能有明显偏差。
激光焊接有哪些优点3
优点
1、聚焦后的激光束具有很高的功率密度,加热速度快,可实现深熔焊和高速焊。由于激光加热范围小,在同等功率和焊接厚度条件下,焊接速度快、热影响区小、焊接应力和变形小。
2、激光能发射、透射,能在空间传播相当距离而衰减很小,可进行远距离或一些难以接近部位的焊接;激光可通过光导纤维、棱镜等光学方法弯曲传输、偏转、聚焦,特别适合于微型零件、难以接近的部位或远距离的焊接。
3、一台激光器可供多个工作台进行不同的工作,既可用于焊接,也可用于切割、合金化和热处理,一机多用。
4、激光在大气中损耗不大,可以穿过玻璃等透明物体,适合于在玻璃制成的密封容器里焊接被合金等剧毒材料;激光不受电磁场影响,不存在X射线防护,也不需要真空保护。
5、可以焊一般焊接方法难以焊接的材料,如高熔点金属等,甚至可用于非金属材料的焊接,如陶瓷、有机玻璃:焊后无需热处理,适合于某些对热输入敏感材料的焊接。
缺点
1、 等离子屏蔽问题。在激光焊接中母材受热熔化、汽化形成深熔小孔时,孔中充满金属蒸汽,金属气体与激光作用形成等离子云。等离子云吸收和反射性很强,降低金属材料对激光的吸收率,使激光的能量利用率降低。此外等离子云强烈时还可能对激光产生负透镜效应,严重影响激光束的聚焦效果。
2、 桥接性差,焊缝装夹精度要求高。激光光斑直径很小,热作用区小,桥接能力很差,对焊缝接头对准的平整度和精度要求很高。
采用激光焊接时焊缝的缝隙宽度不能大于0、2mm,否则激光透过缝隙太多,能量损失很大。同时接头两侧平整度太差时会发生焊接错位,将严重影响焊接质量。这一方面对激光接头的准备提出了很高的要求,另一方面要求装夹精确,对装夹的技术要求高,这都增加了工艺要求和焊接成本。在工业适用化上的技术难度较大。
3、 焊缝的硬度高,焊接热裂纹倾向大。激光焊接时功率密度很大,热作用区域很小,而热输入量小,所以焊接区域会产生很高的峰值温度和温度梯度,焊缝熔化金属快速凝固收缩,这会带来两方面的影响:一是焊缝的硬度很高,有时可能大大高于母材,这在诸如船舶等特殊工业中的应用有所限制;二是对于某些金属零件特别是经过深加工后存在高机械应力的金属焊接后工件热裂纹倾向大。
4、 凹陷及气孔问题。激光焊接过程一般不采用添加填充材料,由于母材端面存在间隙、深熔小孔内金属受热汽化,焊接后焊缝处有时会存在凹陷。焊速高时焊接所形成的金属蒸气来不及从焊缝里跑出,残留在快速熔化凝固后的焊缝里,也会形成气孔。
5、 对高反射金属如铝、铜等的焊接十分困难。铝铜及其合金对激光的反射非常高,起始的反射率高达90%以上,激光能量大部分被反射,难以形成深熔焊的小孔。
关于激光焊接技术和激光焊接技术的发展趋势的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~