跟踪式光伏板(光伏系统跟踪技术)
跟踪式光伏支架工作内容里的线路连接指的什么?
线路连接指的是各个板槽接触位
固定可调式支架
之所以把“固定可调式”单拎出来说,纯粹因为去年以来,这种方式比较火。
下图是青海某地一年采用3种角度和2种倾角的发电量情况。
采用三种不同角度时,各月发电量
不同角度调节方案时,拟合值后各月发电量
相对于最佳倾角:
三种角度(每年调节3次),可提高发电量6.2%,前后间距要增加,占地面积会增大;
15°和36°(每年调节2次),可提高发电量2.9%,前后间距不变,占地面积不变;
55°和36°(每年调节2次),可提高发电量1.6%,前后间距要增加,占地面积会增大。
因此,采用固定式最佳倾角和一个较小的角度是比较合适的。
目前,市场上固定可调式的支架大概有4种。
千斤顶式
液压杆式
推杆式
圆弧式
根据电站运维人员反馈:倾角调节是件非常累人的事情,大家都不愿意去调,导致发电量低于预期值。但固定可调式的故障率如何尚未收到反馈。
二、适合采用跟踪式支架的场址条件
跟踪式安装方式确实能提高发电量。然而,并不是所有的地方,跟踪式支架都能有很好的效果。那什么样的条件,适合采用跟踪式支架呢?
一、高“直射比“的地区
在进行太阳能资源分析时,“直射比”是一个非常重要的参数。
直射比= 水平面直接辐射:水平面直接辐射
跟踪式支架,顾名思义,就是通过支架跟踪太阳光的入射角度,尽量让太阳光垂直于光伏组件。只有直接辐射比例大的地方,跟踪才有意义。
与直射比相关的另外一个参数就是“法向直接辐射”,简称DNI,即一直垂直于太阳能入射方向的直接辐射。直射比大的地方,DNI也会相对偏大。下表为8个领跑者基地的直射比与DNI情况。
单轴和双轴太阳能跟踪器移动光伏板跟随太阳
当入射光线照射到垂直于面板平面的面板表面时,太阳能光伏板的转换效率最高。考虑到太阳是一个不断移动的光源,这种情况在固定安装的情况下每天只会发生一次!然而,一个被称为太阳能跟踪器的机械系统,可以用来不断移动光伏板,使其直接面对太阳。太阳能跟踪器通常会将太阳能电池阵列的发电量从20%提高到40%。
有许多不同的太阳能跟踪器设计,涉及不同的方法和技术,让移动光伏电池板紧紧跟随太阳。然而,从根本上讲,太阳能跟踪器可以分为两种基本类型:单轴和双轴。
一些典型的单轴设计包括:
典型的双轴设计包括:
使用“开环”控件可以粗略地定义跟踪器跟随太阳的运动。这些控件根据安装的时间和地理纬度计算太阳从日出到日落的运动,并开发相应的运动程序来移动光伏阵列。然而,环境负荷(风、雪、冰等)和累积的定位误差使开环系统随着时间的推移变得不那么理想(也不那么准确)。不能保证跟踪器确实指向控件认为应该指向的位置。
利用位置反馈可以提高跟踪精度,并有助于确保太阳能电池阵列实际定位在控制装置指示的位置,根据一天的时间和一年的时间,特别是在涉及强风、雪和冰的气象事件之后。
显然,跟踪器的设计几何和运动力学将有助于确定位置反馈的最佳解决方案。五种不同的传感技术可以用来为太阳能跟踪器提供位置反馈。我将简要描述每一种方法的独特优点。
1 倾角传感器
它们直接安装到PV阵列上,就阵列相对于地平线的“倾斜”提供直接反馈。倾角传感器的单轴跟踪器类似如图a和b以上,或“海拔”轴位置追踪器如图d,e,f。很明显,一个倾角传感器将没有价值一种追踪与图c。绝对位置保留——倾角传感器将准确地报告倾斜角。
2 接近传感器
这些是用来计数齿轮齿仰角或千斤顶螺钉或旋转回转环。根据具体设计的运动执行机构安装。位置数据(脉冲计数)必须保存在控制器中,因为接近传感器本身不知道角度或旋转位置。因此,传感器不提供绝对位置——它只报告基于感知目标存在/不存在的增量运动。尽管有这些缺点,接近传感器是许多跟踪应用程序最具成本效益的解决方案之一。
3. 旋转编码器
这些传感器和测量驱动电机或电机驱动直线执行机构的旋转,通常需要紧密地集成到执行机构本身的设计中。(例如,旋转编码器对于液压缸驱动的线性执行器就不是一个好的选择。)绝对多圈旋转编码器可以提供保留绝对位置数据的功能,并可以应用于任何仰角或旋转轴的跟踪类型以上所示。
4 感应旋转位置传感器
位置传感器直接安装到跟踪器仰角轴的旋转部件上,以感知旋转位置。他们是理想的单轴跟踪器类似如图a和b以上,或“海拔”轴的追踪器如图d,e, f。
5 超声波传感器
超声波传感器能够测量相对较长的距离,可以安装在跟踪框架上,并提供传感器与安装在地面或跟踪基座上的固定目标之间的距离反馈。太阳能电池板的倾斜角可以很容易地确定使用这个测量距离和一点。超声波传感器的方法还提供了准确的绝对位置信息。
跟踪式光伏支架比固定式光伏支架发电量能增加多少
固定支架系统在国内应用较为广泛,其优势在于价格低廉,结构稳定,后期基本免维护。但对于光伏系统而言,年平均日照时数较低。跟踪式支架通过追踪太阳高度角和方位角以达到增加太阳能辐射,从而增加发电量的目的,其优势在于年平均日照时数高,但先期投资成本较高,后期需要一定的维护。并且光伏组件的安装倾角越大,设计的方阵间距也越大,相同装机容量所需土地也越多。并且倾角可调支架需要根据季节对支架进行调节,从而增加了人工运维的成本。以1MW电站为例,每调节一次所需人工费用约为千元以上。因此,不同的地区增加的不一样,这是由于地区不一样,安装最佳光照角度也不一样,跟踪调整的次数也不一样,光伏组件安装倾角是影响光伏系统发电量的重要因素,同时也是影响光伏方阵行距的重要因素。在调整角度方面我们结合太阳的运动规律,研究倾角可调支架一年调整2次(暖季和寒季)和4次(春季、夏季、秋季和冬季)倾角的方式。根据天文划分四季法,结合每年“两分”、“两至”的时间,确定一年调整2次倾角的时间段为4-9月(暖季)和10-3月(寒季);一年调整4次倾角的时间段为3-5月(春季),6-8月(夏季),9-11月(秋季)和12-2月(冬季);调整时间为每个时间段的开始。据西安的都安光伏发电那里了解到的一个例子就是在华北地区采用倾角可调支架比固定式光伏支架发电量大概能增加4%左右以上的电量,而在我国南方预计只能增加3%左右的电量。所以综合考虑成本比如我们西安都安光伏发电做的一般都是固定式的,据说市面上有自动调节的万向联轴器+智能控制程序结合方式的设备可以进行自动调节,但无形中增加了成本。
关于光伏跟踪的几个疑问
这个资料供参考:可能所问非所答
双轴跟踪优势
当今,利用太阳能发电已成为新能源利用的一种重要的方法。太阳能光伏组件阵列是实现光电转换的主要器件,光伏系统的发电量大小除与电池板功率和运行状况有关外,还与能量的转换效率有关,直接影响性能的好坏。因此太阳能光伏组件阵列的安装方式对太阳能发电系统的效率影响非常大。传统的太阳能光伏组件大都采用固定式安装,即电池板固定在支架结构上,不随太阳位置的变化而移动,这样的结果是将严重影响转换效率。据测算,如果系统与太阳光线角度存在25°的偏差,就会因垂直射入的辐射能减少而使光伏阵列的输出功率下降10%左右,这是因为太阳能光伏组件阵列的发电量与阳光光线入射角度有关,光线垂直与组件平面时光伏阵列接收到的太阳辐射量最大,其发电量最大。为了解决这一问题,太阳自动跟踪系统应运而生,采用太阳自动跟踪系统可在最大程度上保证电池组件与太阳光光线的始终垂直。
目前使用广泛的有三种太阳光伏自动跟踪系统,包括水平单轴跟踪、倾纬度角斜单轴跟踪和双轴跟踪,其中水平单轴跟踪和倾斜单轴跟踪只有一个旋转自由度,双轴跟踪具有两个旋转自由度。三种跟踪系统采用的跟踪控制策略为主动式跟踪控制策略,通过计算得出太阳在天空中的方位,并控制光伏阵列朝向。这种主动式光伏自动跟踪系统能够较好的适用于多霜雪、多沙尘的环境中,在无人值守的光伏电站中也能够可靠工作。从跟踪是否连续的角度看,所研制的光伏自动跟踪系统采用了步进跟踪方式,与连续跟踪方式相比,步进跟踪方式能够大大的降低跟踪系统自身能耗。
下图是某地不同安装情况组件接收到的辐射强度(度/平方米/日)对比数据。
水平面 最佳倾角安装 水平单轴跟踪 倾纬度角斜单轴跟踪 双轴跟踪
一月 2.78 5.38 4.97 6.77 7.44
二月 3.79 5.95 5.88 7.46 7.75
三月 4.86 6.07 7.04 7.99 8.00
四月 5.90 6.20 8.27 8.61 8.70
五月 6.53 6.10 8.50 8.33 8.71
六月 6.35 5.67 7.90 7.51 8.03
七月 5.99 5.46 7.45 7.17 7.59
八月 5.66 5.62 7.47 7.54 7.73
九月 4.91 5.64 6.65 7.27 7.27
十月 4.08 5.74 5.77 7.06 7.16
十一月 2.92 5.13 4.76 6.39 6.75
十二月 2.32 4.65 4.19 5.79 6.45
年平均数 4.68 5.63 6.57 7.32 7.63
逐月数据比较
年平均值比较
从上表中可以知道,与水平相比,最佳倾角安装可提高发电量20.3%,水平单轴安装可提高40.3%,倾纬度角斜单轴跟踪可提高56.4%,双轴跟踪可提高63.3%。
跟踪式光伏板的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于光伏系统跟踪技术、跟踪式光伏板的信息别忘了在本站进行查找喔。微信号:ymsc_2016
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~