金属空气燃料电池生产工艺(金属空气燃料电池生产工艺流程)
燃料电池
燃料电池 燃料电池(Fuel cells)是一种将燃料的化学能直接转换成电能的
装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。如同
传统的电池,燃料电池干净、高效率、无噪音,但不需要充电。类似
于内燃机,燃料电池需用燃料作能源。燃料电池用氢用燃料,也可以
添加一个氢变换器,直接用甲醇、天然气、甚至汽油、柴油、煤等作
燃料。由于燃料电池直接将燃料的化学能转变为电能,能源效率高达
80%(电能加热能),但没有内燃机的燃烧过程、相关的传动部件以及
造成的污染。
为了了解它的价值,
让我们分别研究一下“燃料”和“电池”这两个词。
为了利用煤或者石油这样的燃料来发电,必须先燃烧煤
或者石油。它们燃烧时产生的能量可以对水加热而使之变成
蒸汽,蒸汽则可以用来使涡轮发电机在磁场中旋转。这样就
产生了电流。换句话说,我们是把燃料的化学能转变为热能,
然后把热能转换为电能。
在这种双转换的过程中,许多原来的化学能浪费掉了。
然而,燃料非常便宜,虽有这种浪费,也不妨碍我们生产大
量的电力,而无需昂贵的费用。
还有可能把化学能直接转换为电能,而无需先转换为热
能。为此,我们必须使用电池。这种电池由一种或多种化学
溶液组成,其中插入两根称为电极的金属棒。每一电极上都
进行特殊的化学反应,电子不是被释出就是被吸收。一个电
极上的电势比另一个电极上的大,因此,如果这两个电极用
一根导线连接起来,电子就会通过导线从一个电极流向另一
个电极。
这样的电子流就是电流,只要电池中进行化学反应,这
种电流就会继续下去。手电筒的电池是这种电池的一个例子。
在某些情况下,当一个电池用完了以后,人们迫使电流
返回流入这个电池,电池内会反过来发生化学反应,因此,
电池能够贮存化学能,并用于再次产生电流。汽车里的蓄电
池就是这种可逆电池的一个例子。
在一个电池里,浪费的化学能要少得多,因为其中只通
过一个步骤就将化学能转变为电能。然而,电池中的化学物
质都是非常昂贵的。锌用来制造手电筒的电池。如果你试图
使用足够的锌或类似的金属来为整个城市准备电力,那么,
一天就要花成本费数十亿美元。
燃料电池是一种把燃料和电池两种概念结合在一起的装
置。它是一种电池,但不需用昂贵的金属而只用便宜的燃料
来进行化学反应。这些燃料的化学能也通过一个步骤就变为
电能,比通常通过两步方式的能量损失少得多。于是,可以
为人类提供的电量就大大地增加了。
问题在于难以制备一种确实能以可靠方式进行工作的燃
料电池。已制备了这样的电池,其中是靠氢和氧的结合来产
生电能,但氢仍然是很昂贵的。有人用一氧化碳来代替氢,
这倒是便宜一些。最近还制备了利用污水与氧的结合在细菌
作用的影响下产生电能的电池。无疑,把污水转变为电的想
法是令人鼓舞的,并可解决两个问题:使宜的电力和废物的
处理。
在燃料电池确实可供实用之前,还有许多工作要做,但
它们代表着一种光明的前景。
↓
燃料电池是把燃料中的化学能直接转化为电能的能量转化装置,它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能"储电"而是一个"发电厂"。燃料电池也有多种类型,经过多年的探索,最有望用于汽车的是质子交换膜燃料电池。它的工作原理是:将氢气送到负极,经过催化剂(铂)的作
用,氢原子中两个电子被分离出来,这两个电子在正极的吸引下,经外部电路产生电流,失去电子的氢离子(质子)可穿过质子交换膜(即固体电解质),在正极与氧原子和电子重新结合为水。由于氧可以从空气中获得,只要不断给负极供应氢,并及时把水(蒸汽)带走,燃料电池就可以不断地提供电能。
燃料电池通常是按构成的电解质来分类。现在开发最为盛行的有4种燃料电池。各种燃料电池,特别是其动作温度不相同,最先进行开发的磷酸型燃料电池(PAFC)约在200℃的温度下动作。相对于此,熔融碳酸盐型燃料电池(MCFC)和固体氧化物燃料电池均可应用在以石燃料为基本燃料的电厂内,可作为电力电源来利用。高温型燃料电池又可称之为是通过利用其高质量排气,来面向复合发电的燃料电池。
太空船的十个组件之一,用来达成太空竞赛胜利之用。
燃料电池实质上是以控制氢弹爆炸的观念设计,太空船上的燃料电池是用来聚集星际旅行之间的氢气所产生的能量之用。太空船的太阳能板所聚集的电磁和太阳能将会转换成电能,而电能会用来慢慢地将存放在燃料电池内的氢置换成燃料。燃料电池也内含了一小部份受控制量的可进行核分裂的物质,这些物质依序用来与氢核进行核反应。核反应在燃料电池内进行,在太空旅程中提供高能量并加速离子引擎来推进太空船。在最后的旅程阶段,燃料电池提供了燃料火箭动力所需的氢。这整个过程受控在强大的电磁下,它能提供能量并且避免过量的能量外泄导致反应炉核心融毁。核反应的一项副产物——热能,则被燃料电池的外壁吸收并转换成供给电脑、维生系统和其他必要功用的电能 。
什么是燃料电池?工作原理是什么样的?
燃料电池(Fuel Cell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。但是,它需要电极和电解质以及氧化还原反应才能发电。
2014年2月19日据物理学家组织网报道,美国科学家开发出一种直接以生物质为原料的低温燃料电池。这种燃料电池只需借助太阳能或废热就能将稻草、锯末、藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高
燃料电池是将燃料具有的化学能直接变为电能的发电装置。
燃料电池
燃料电池其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。这里以氢-氧燃料电池为例来说明燃料电池
氢-氧燃料电池反应原理这个反应是电解水的逆过程。电极应为: 负极:H2 +2OH-→2H2O +2e-
正极:1/2O2+H2O+2e-→2OH-
电池反应:H2+1/2O2==H2O
另外,只有燃料电池本体还不能工作,
燃料电池
必须有一套相应的辅助系统,包括反应剂供给系统、排热系统、排水系统、电性能控制系统及安全装置等。
燃料电池通常由形成离子导电体的电解质板和其两侧配置的燃料极(阳极)和空气极(阴极)、及两侧气体流路构成,气体流路的作用是使燃料气体和空气(氧化剂气体)能在流路中通过。
燃料电池的制作方法
燃料电池在工作时,燃料和氧化剂连续由外部供给,在电极上反应,生成物连续不间断排除,其原理同原电池.
一、 所需器材:
铜片、肥皂(清洁剂)、食盐、水、量杯、天平、三脚架、陶瓷纤维网、酒精灯、 三用电
表、鳄鱼夹、直尺、螺旋测微器。
二、实验步骤:
1.裁好所需尺寸大小的铜片两片,并以肥皂清洗,去除表面油污。
2.将铜片乾燥后,以酒精灯加热铜片,直到铜片表面全部变黑
3.将加热好的铜片(氧化铜)静置冷却。 (注意:氧化铜极易脱落,冷却时应避免移动或触碰)
4.调配好所需浓度的食盐水溶液500mL。
5.将铜片与氧化铜片浸入食盐水中适当深度,并以鳄鱼夹固定后,以电线分别连接三用电表
之正负极。
6.将步骤五之实验装置置於阳光下,并注意将黑色的氧化铜面正向阳光
肆、研究方法
1. 实验一:食盐水浓度的影响
控制变因:反应物在液面下的面积(12.5cm2)、食盐水体积(500mL)、铜片的大小( 5*5cm2 )
与厚薄、铜片加热为氧化铜的时间(30分钟) 、实验开始时间(中午12:30)。
操纵变因:食盐水浓度(5%、10%、15%)
应变变因:输出电流的大小。
2. 实验二:反应物在液面下面积的影响
控制变因:食盐水浓度(10%)、食盐水体积(500mL)、铜片的大小( 5*5cm2 )与厚薄、铜片加热
为氧化铜的时间(30分钟) 、实验开始时间(中午12:30)。
操纵变因:反应物在液面下的面积(12.5cm2、6.25cm2)。
应变变因:输出电流的大小。
3. 实验三:铜片厚薄的影响
控制变因:食盐水浓度(10%)、食盐水体积(500mL)、铜片的大小( 5*5cm2 )、铜片加热为氧化
铜的时间(30分钟) 、反应物在液面下的面积( 12.5 cm2 )、实验开始时间(中午12:30)。
操纵变因:铜片厚薄(0.1mm、0.05mm)
应变变因:输出电流的大小。
4. 实验四:铜片的大小的影响
控制变因:食盐水浓度(10%)、食盐水体积(500mL)、铜片的厚薄、铜片加热为氧化铜的时间
(30分钟) 、反应物在液面下的面积(12.5 cm2 、18 cm2 )、实验开始时间(中午12:30)。
操纵变因:铜片大小 ( 5*5cm2 、6*6cm2 )
应变变因:输出电流的大小。
5. 实验五:电解液种类的影响
控制变因:电解液浓度(10%)、食盐水体积(500mL)、铜片的大小( 5*5cm2 )、厚薄、铜片加热
为氧化铜的时间(30分钟) 、反应物在液面下的面积(12.5 cm2 )、实验开始时间
(中午12:30)。
操纵变因:电解液种类(食盐水、硫酸铜水溶液)
应变变因:输出电流的大小。
6. 实验六:不同金属片的影响
控制变因:食盐水浓度(10%)、食盐水体积(500mL)、铜片的大小( 5*5cm2 )、厚薄、金属片加
热的时间(30分钟) 、反应物在液面下的面积( 12.5cm2 )、实验开始时间(中午12:30)。
操纵变因:不同金属片(铜片、铝片)
应变变因:输出电流的大小。
7. 实验七:铜片燃烧的时间
控制变因:食盐水浓度(10%)、食盐水体积(500mL)、铜片的大小( 5*5cm2 )、厚薄、反应物在
液面下的面积( 12.5 cm2 )、实验开始时间(中午12:30)。
操纵变因:金属片加热的时间(30分钟、1小时)。
应变变因:输出电流的大小。
伍、研究成果与讨论
(1) 实验一:食盐水浓度的影响
开始时间:民国九十二年三月三日中午12:30
表1-1食盐水浓度15%
时间(分) 0 26 48 53 69 72 93 150
电流(mA) 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35
表1-2食盐水浓度10%
时间(分) 0 18 26 59 74 77 106 142
电流(mA) 0.8 0.75 0.7 0.65 0.65 0.55 0.5 0.45
表1-3食盐水浓度5%
时间(分) 0 25 47 75 86 94 117 156
电流(mA) 0.75 0.7 0.65 0.6 0.5 0.55 0.45 0.4
当食盐水浓度15%时,电池最大电流有0.7mA;而食盐水浓度10%时,电池最大电流有
0.80mA;食盐水浓度5%时,电池的最大电流0.75mA。也就是说,食盐水浓度太大,反而形
成输出电流的阻力(食盐水溶液中导电粒子碰撞的机率增高)因此,在以下的实验中,我们
决定采用食盐水浓度10%为最佳。另外,值得一提的是,食盐水溶液会逐渐变为淡绿色,我
们认为可能是铜绿所造成的。
(2) 实验二:反应物在液面下面积的影响
开始时间:民国九十二年三月二日中午12:30
表2-1浸入面积:12.5(cm2)
时间(分) 0 13 39 43 56 60 67
电流(mA) 0.8 0.75 0.7 0.65 0.6 0.55 0.5
表2-2浸入面积:6.25(cm2)
时间(分) 0 2 5 8 20 44 65
电流(mA) 0.45 0.4 0.35 0.3 0.25 0.2 0.15
当铜片与氧化铜片浸入食盐水中的面积达一半时,电池最大电流有0.8mA;当铜片与氧
化铜片浸入食盐水中的面积达四分之一时的最大电流0.45mA。所以,我们认为反应物在液面
下面积越大所产生的电流也就越大。
(3) 实验三:铜片厚薄的影响
开始时间:民国九十二年三月四中午12:30
表3-1 较厚铜片 (厚度0.5mm)
时间(分) 0 26 48 53 69 72 93
电流(mA) 0.8 0.75 0.7 0.65 0.6 0.55 0.5
表3-2 较薄铜 片(厚度 1mm)
时间(分) 0 13 39 43 56 60 67
电流(mA) 0.8 0.75 0.7 0.65 0.6 0.55 0.5
当较薄铜片反应时,电池最大电流0.8(mA);换上较厚的铜片 ,最大电流亦是0.8mA。显示
出铜片的厚薄并非影响输出电流大小的主要变因。
(4) 实验四:铜片的大小的影响
开始时间:民国九十二年三月五日中午12:30
表4-1 铜片的大小 :36 cm2
时间(分) 0 12 15 75 107 121 150
电流(mA) 0.8 0.75 0.7 0.65 0.6 0.55 0.5
表4-2 铜片的大小 :25 cm2
时间(分) 0 12 55 84 112 147 163
电流(mA) 0.65 0.6 0.55 0.5 0.45 0.4 0.35
我们发现以面积36cm2的铜片为电极的电池,电流0.8mA;而以25㎝2的铜片为电极的
电池,电流0.65mA。这项结果与讨论(二)意义相同,而「太阳能电池需要大面积来产生较
大的电流」在此亦可得到验证。
(5) 实验五:电解液种类的影响
开始时间:民国九十二年三月六中午12:30
表5-1电解液:食盐水(10%)
时间(分) 0 3 14 27 41 87 122
电流(mA) 0.55 0.5 0.45 0.4 0.35 0.3 0.25
表5-2电解液:硫酸铜水溶液(10%)
时间(分) 0 13 44 57 77 90 120
电流(mA) 0.1 0.05 0 0.05 0 0 0
我们用硫酸铜水溶液和食盐水来比较,发现以硫酸铜水溶液为电解液的电池最大电流只
有0.1(mA)而以食盐水为电解液的电池最大电流有0.55(mA),为什麼硫酸铜溶液最大电
流会那麼小?我们想可能是因为负极的氧化铜片和硫酸铜水溶液中的铜离子(Cu+2)活性相
近,不利於溶液中离子的导电,电流也小。所以,电解液的种类是影响电池电流的重要因素
之一。
(6) 实验六:不同金属片的影响
开始时间:民国九十二年三月七中午12:30
表6-1金属片:铜片
时间(分) 0 26 48 53 69 72 93
电流(mA) 0.8 0.75 0.7 0.65 0.55 0.5 0.45
表6-2金属片:铝片
时间(分) 0 26 48 60 75 90 120
电流(mA) 0.1 0.05 0 0 0 0 0
我们使用了铜片和铝片,发现以铜片为电极的电池最大电流是0.80(mA);以铝片为电
极的电池最大电流只有0.10(mA)。我们想,有可能是选用铝片作为电极时,并不适合以食盐
水溶液作为电解液;也有可能铝片本身就不适合作为太阳能电池的电极。
(7) 实验七:铜片燃烧的时间
开始时间:民国九十二年三月八中午12:30
表7-1 铜片燃烧的时间(1小时)
时间(分) 0 2 4 32 41 63 84
电流(mA) 0.7 0.65 0.6 0.55 0.5 0.45 0.4
表7-2铜片燃烧的时间(30分钟)
时间(分) 0 26 48 53 69 72 93
电流(mA) 0.8 0.75 0.7 0.65 0.6 0.55 0.5
铜片燃烧时间为一小时,最大电流有0.70mA,可是当铜片燃烧时间三十分钟,最大电流有
0.80mA。可见在制作氧化铜片时,虽然加热愈久,产生的氧化铜愈多,但可能因温度过高,
反而导致生成的黑色的氧化铜更易脱落,真正附著於铜片表面的氧化铜较少,所以,电池的
电流不增反减。因此,铜片燃烧时间最好设定在三十分钟。
陆、结论
(一) 本实验在日照下,由负极氧化铜片上的光电效应所产生之电子,配合铜片作为正极以
及电解液(食盐水)的导电,可对外输出电流0.8mA(本次实验的最大电流)。若在室内
或阳光不充足的地方,本实验装置亦可产生约0.1mA的电流,不过此时的电流应该是氧化
还原反应所产生的,而且负极是铜片,正极为氧化铜。所以,本实验装置的确是属於太阳
能电池的一种。
(二) 本实验的优点是取得材料容易,而在适当的条件下,诸如:日照充足、以浓度10%的
食盐水作为电解液,置於食盐水面下的铜片与氧化铜片面积愈大愈好,加热铜片以三十分
钟较佳,实验所得的电流较为可观。
(三) 本实验有两点可供改良之处:
(1)氧化铜片常容易在拿取或实验的过程中脱落,可在氧化铜表面以一层透明胶带黏
著,以避免造成输出电流减少或导致实验产生较大的误差。
(2)加热铜片可以用烤箱来取代,不仅加热较为均匀,烤箱亦可以设定时间长短与热源
强度,增加实验准确度。
柒、参考文献
1. 自然科学知识文库 ,台北市,北一出版,1978。
2. 科学教授 ,台北市,故乡出版,1981。
3. 电池组与能源系统,尔泰曼著,张桐生译,台北市,徐氏出版,1989。
4. 普通物理学(第四册),Harris Benson著,张洁仪、郑宜男译,台北,状元出版社,1992。
参考资料:
燃料电池到底怎么工作的?
燃料电池是将燃料具有的化学能直接变为电能的发电装置。
燃料电池(e-是电子)
燃料电池其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。这里以氢-氧燃料电池为例来说明燃料电池
氢-氧燃料电池反应原理这个反应是电解水的逆过程。电极应为: 负极:H2 +2OH-→2H2O +2e-
正极:1/2O2 H2O 2e-→2OH-
电池反应:H2 1/2O2==H2O
另外,只有燃料电池本体还不能工作,
燃料电池
必须有一套相应的辅助系统,包括反应剂供给系统、排热系统、排水系统、电性能控制系统及安全装置等。
燃料电池通常由形成离子导电体的电解质板和其两侧配置的燃料极(阳极)和空气极(阴极)、及两侧气体流路构成,气体流路的作用是使燃料气体和空气(氧化剂气体)能在流路中通过。
在实用的燃料电池中因工作的电解质不同,经过电解质与反应相关的离子种类也不同。PAFC和PEMFC反应中与氢离子(H )相关,发生的反应为:
燃料极:H2=2H 2e-(1)
空气极:2H 1/2O2 2e-=H2O(2)
全体:H2 1/2O2=H2O(3)
氢氧燃料电池组成和反应循环图
在燃料极中,供给的燃料气体中的H2分解成H 和e-,H 移动到电解质中与空气极侧供给的O2发生反应。e-经由外部的负荷回路,再反回到空气极侧,参与空气极侧的反应。一系例的反应促成了e-不间断地经由外部回路,因而就构成了发电。并且从上式中的反应式(3)可以看出,由H2和O2生成的H2O,除此以外没有其他的反应,H2所具有的化学能转变成了电能。但实际上,伴随着电极的反应存在一定的电阻,会引起了部分热能产生,由此减少了转换成电能的比例。 引起这些反应的一组电池称为组件,产生的电压通常低于一伏。因此,为了获得大的出力需采用组件多层迭加的办法获得高电压堆。组件间的电气连接以及燃料气体和空气之间的分离,采用了称之为隔板的、上下两面中备有气体流路的部件,PAFC和PEMFC的隔板均由碳材料组成。堆的出力由总的电压和电流的乘积决定,电流与电池中的反应面积成比。
PAFC的电解质为浓磷酸水溶液,而PEMFC电解质为质子导电性聚合物系的膜。电极均采用碳的多孔体,为了促进反应,以Pt作为触媒,燃料气体中的CO将造成中毒,降低电极性能。为此,在PAFC和PEMFC应用中必须限制燃料气体中含有的CO量,特别是对于低温工作的PEMFC更应严格地加以限制。
磷酸燃料电池的基本组成和反应原理是:燃料气体或城市煤气添加水蒸气后送到改质器,把燃料转化成H2、CO和水蒸气的混合物,CO和水进一步在移位反应器中经触媒剂转化成H2和CO2。经过如此处理后的燃料气体进入燃料堆的负极(燃料极),同时将氧输送到燃料堆的正极(空气极)进行化学反应,借助触媒剂的作用迅速产生电能和热能。
相对PAFC和PEMFC,高温型燃料电池MCFC和SOFC则不要触媒,以CO为主要成份的煤气化气体可以直接作为燃料应用,而且还具有易于利用其高质量排气构成联合循环发电等特点。
MCFC主构成部件。含有电极反应相关的电解质(通常是为Li与K混合的碳酸盐)和上下与其相接的2块电极板(燃料极与空气极),以及两电极各自外侧流通燃料气体和氧化剂气体的气室、电极夹等,电解质在MCFC约600~700℃的工作温度下呈现熔融状态的液体,形成了离子导电体。电极为镍系的多孔质体,气室的形成采用抗蚀金属。
MCFC工作原理。空气极的O2(空气)和CO2与电相结合,生成CO23-(碳酸离子),电解质将CO23-移到燃料极侧,与作为燃料供给的H 相结合,放出e-,同时生成H2O和CO2。化学反应式如下:
燃料极:H2 CO23-=H2O 2e- CO2(4)
空气极:CO2 1/2O2 2e-=CO23-(5)
全体:H2 1/2O2=H2O(6)
在这一反应中,e-同在PAFC中的情况一样,它从燃料极被放出,通过外部的回路反回到空气极,由e-在外部回路中不间断的流动实现了燃料电池发电。另外,MCFC的最大特点是,必须要有有助于反应的CO23-离子,因此,供给的氧化剂气体中必须含有碳酸气体。并且,在电池内部充填触媒,从而将作为天然气主成份的CH4在电池内部改质,在电池内部直接生成H2的方法也已开发出来了。而在燃料是煤气的情况下,其主成份CO和H2O反应生成H2,因此,可以等价地将CO作为燃料来利用。为了获得更大的出力,隔板通常采用Ni和不锈钢来制作。
SOFC是以陶瓷材料为主构成的,电解质通常采用ZrO2(氧化锆),它构成了O2-的导电体Y2O3(氧化钇)作为稳定化的YSZ(稳定化氧化锆)而采用。电极中燃料极采用Ni与YSZ复合多孔体构成金属陶瓷,空气极采用LaMnO3(氧化镧锰)。隔板采用LaCrO3(氧化镧铬)。为了避免因电池的形状不同,电解质之间热膨胀差造成裂纹产生等,开发了在较低温度下工作的SOFC。电池形状除了有同其他燃料电池一样的平板型外,还有开发出了为避免应力集中的圆筒型。SOFC的反应式如下:
燃料极:H2 O2-=H2O 2e-(7)
空气极:1/2O2 2e-=O2-(8)
全体:H2 1/2O2=H2O(9)
燃料极,H2经电解质而移动,与O2-反应生成H2O和e-。空气极由O2和e-生成O2-。全体同其他燃料电池一样由H2和O2生成H2O。在SOFC中,因其属于高温工作型,因此,在无其他触媒作用的情况下即可直接在内部将天然气主成份CH4改质成H2加以利用,并且煤气的主要成份CO可以直接作为燃料利用。(摘自百科,希望采纳,谢!)
谁了解燃料电池的工艺技术?
燃料电池是将所供燃料的化学能直接变换为电能的一种能量转换装置,是通过连续供给燃料从而能连续获得电力的发电装置。由于其具有发电效率高,适应多种燃料和环境特性好等优点,近年来已在积极地进行开发。
由于燃料电池能将燃料的化学能直接转换为电能,因此,它没有像普通火力发电厂那样的通过锅炉、汽轮机、发电机的能量形态变化,可避免过程中转换损失,达到市制发电效率。此外,还具有以下优点:(1)部分负荷时也能保持高的效率;(2)通过与燃料供给装置的组合,可适用范围的燃料;(3)由于输出功率单位由堆的输出功率决定,故机组容量具有自由度;(4)电池本体的负荷响应性好;(5)NOX及SOX等的排出量少,有利环保。
燃料电池通常是按构成的电解质来分类。现在开发最为盛行的有4种燃料电池。各种燃料电池,特别是其动作温度不相同,最先进行开发的磷酸型燃料电池(PAFC)约在200℃的温度下动作。相对于此,熔融碳酸盐型燃料电池(MCFC)和固体氧化物燃料电池均可应用在以石燃料为基本燃料的电厂内,可作为电力电源来利用。高温型燃料电池又可称之为是通过利用其高质量排气,来面向复合发电的燃料电池。
1991年,我国首创以铝-空气-海水为能源的新型电池,称之为海洋电池。它是一种无污染、长效、稳定可靠的电源。海洋电池彻底改变了以往海上航标灯两种供电方式:一是一次性电池,如锌锰电池、锌银电池、锌空(气)电池等。这些电池体积大,电能低,价格高。二是先充电后给电的二次性电源,如铅蓄电池,镍镉电池等。这种电池要定期充电,工作量大,费用高。
海洋电池,是以铝合金为电池负极,金属(Pt、Fe)网为正极,用取之不尽的海水为电解质溶液,它靠海水中的溶解氧与铝反应产生电能的。我们知道,海水中只含有0.5%的溶解氧,为获得这部分氧,科学家把正极制成仿鱼鳃的网状结构,以增大表面积,吸收海水中的微量溶解氧。这些氧在海水电解液作用下与铝反应,源源不断地产生电能。两极反应为:
负极:(Al):4Al-12e=4Al3+
正极:(Pt或Fe等):3O2+6H2O十12e=12OH-
总反应式:4Al+3O2十6H2O=4Al(OH)3↓
海洋电池本身不含电解质溶液和正极活性物质,不放入海洋时,铝极就不会在空气中被氧化,可以长期储存。用时,把电池放入海水中,便可供电,其能量比干电池高20~50倍。
电池设计使用周期可长达一年以上,避免经常交换电池的麻烦。即使更换,也只是换一块铝板,铝板的大小,可根据实际需要而定。
海洋电池没有怕压部件,在海洋下任何深度都可以正常了作。海洋电池,以海水为电解质溶液,不存在污染,是海洋用电设施的能源新秀。
金属空气电池的技术发展水平,瓶颈以及市场前景如何?
铝空气电池,快速换电可以解决电动车充电速度的问题。技术成熟后有可能应用在可换电 电动汽车上,应该比氢燃料电池便宜。
铝空气电池作为非充电电池,早在20世纪60年代便已问世,并具有非常高的能量密度。铝空气电池由催化空气阴极、电解质和金属铝阳极组成。
一个铝氧化成铝离子,释放3个电子,比锂强。按照电能/体积-重量计算,能量密度比锂电高。但是氧化成氧化铝后体积会膨胀,密度会降低。如果压实氧化铝,铝接触不到氧气,反应速率会下降。(理论比能量可达8100Wh/kg,仅次于锂-空气电池的13.0千瓦时/千克,2014年的铝空气电池的实际比能量只达到350Wh/kg,仍然是锂电池的2倍。)
特斯拉的专利技术也在瞄准金属空气电池,该专利描述了此电池组由锂离子和金属空气电池(lithium-ion and metal-air)组成,充一次电可以让汽车行驶距离达400英里(约合650公里)。特斯拉的“增程混合动力电池组系统”包含标准的锂离子电池组、控制器和常规电动机,还另配有一个金属空气化学电池组。锂离子电池组直接给车供电,金属空气电池组为锂离子电池组提供电能。在特斯拉的专利设计中,金属空气电池组基本上取代了增程式内燃机。
以色列Phinergy公司开发出的铝-空气电池的空气阴极配备有专用的银基催化剂,其采用了独特的创新结构,该结构可以使氧气顺利通过,而可以将二氧化碳阻隔在外。通过该创新结构,Phinergy铝-空气电池的空气阴极可以有效避免碱在正极的碳化问题,其工作寿命也因此可以达到数千小时。铝的氧化反应在铝暴露在空气中时会自然发生,表面的氧化铝会阻止深层的铝继续发生反应,新电池采用的新技术则包含了电解质(KOH溶液?)可溶解表面氧化层,使反应持续进行。
金属空气燃料电池生产工艺的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于金属空气燃料电池生产工艺流程、金属空气燃料电池生产工艺的信息别忘了在本站进行查找喔。微信号:ymsc_2016
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~