焊接资讯

您现在的位置是:首页 > 特种焊丝 > 正文

特种焊丝

氩弧焊的热源和焊丝关联控制(氩弧焊时的热源和填充焊丝怎么控制)

工品易达2022-11-04特种焊丝19

钨极氩弧焊原理和特点

这种焊接方法由于电弧是在氩气中进行燃烧,因此具有以下优缺点:

1)

氩气具有极好的保护作用,能有效的隔绝周围空气;它本身既不与金属起化学反应,也不溶于金属,使得焊接过程中的冶金反应简单易控制,因此获得较高质量的焊缝提供良好条件。

2)钨极电弧非常稳定,即使在很小电流情况下(10a)仍可稳定燃烧,特别适用于薄板材料焊接。

3)热源和填充焊丝可分别控制,因而热输入容易调整所以这种焊接方法可进行全方位焊接,也是实现单面焊双面成型的理想方法。

4)由于填充焊丝不通过电流,故不产生飞溅,焊缝成型美观。

5)交流氩弧焊在焊接过程中能够自动清除焊件表面的氧化膜作用,因此,可成功地焊接一些化学活泼性强的有色金属,如铝、镁及合金。

6)钨极承载电流能力较差,过大的电流会引起钨极的熔化和蒸发,其微粒有可能进入熔池而引起夹钨。因此,熔敷速度小、熔深浅、生产率低。

7)采用氩气较贵,熔敷率低,且氩弧焊机有较复杂,和其他焊接方法(如焊条电弧焊、埋弧焊、co2­气体保护焊)比较,生产成本较高。

8)氩弧周围受气流影响较大,不易室外工作。

丝氩弧焊热源和填丝是分别还是关联控制?

是关联控制的。因为他应该有一个很好的配比才行,没有排名就不行了。

TTG氩弧焊和其他氩弧焊的区别与相同点是什么?

TIG焊(Tungsten Inert Gas Welding),又称为非熔化极惰性气体钨极保护焊。无论是人工焊接还是自动焊接0.5~4.0mm厚的不锈钢时,TIG焊比常用的。用TIG焊加填丝的方式常用于压力容器的打底焊接,原因是TIG焊接的气密性较好能降低压力容器焊焊接时焊缝的气孔。TIG焊的热源为直流电弧,工作电压为10~95伏,但电流可达600安。焊机的正确连结方式是工件连结电源的正极,焊炬中的钨极作为负极。惰性气体一般为氩气。

焊接流程:

惰性气体通过焊炬送入,在电弧四周和焊接熔池上形成屏蔽。为增加热输入,一般向氩内添加5%的氢。但是,在焊接铁素体不锈钢时,不能在氩气内加氢。气体耗量每分钟约3~8升。在焊接过程中除从焊炬吹入惰性气体外,最好还从焊缝下吹入保护焊缝背面用的气体。

如果需要,可以向焊缝熔池内填充与被焊奥氏体材料成分相同的焊丝,在焊接铁素体不锈钢时,通常使用316型填料。

原理与优势:

气体保护焊是利用外加气体作为保护介质的一种电弧焊方法,其优点是电弧和熔池可见性好,操作方便;没有熔渣或很少熔渣,无需焊后清渣。但在室外作业时需采取专门的防风措施。

根据焊接过程中电极是否熔化,气体保护焊可分为不熔化极(钨极)气体保护焊和熔化极气体保护焊。前者包括钨极惰性气体保护焊、等离子弧焊和原子氢焊。原子氢焊目前在生产中已很少应用。

钨极惰性气体保护焊英文简称TIG(Tungsten Inert Gas Welding)焊。它是在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)的一种焊接方法。焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而可获得优质的焊缝。保护气体可采用氩气、氦气或氩氦混合气体。在特殊应用场合,可添加小量的氢。用氩气作为保护气体的称钨极氩弧焊,用氦气的称钨极氦弧焊,由于氦气价格昂贵,在工业上钨极氩弧焊的应用要比氦弧焊广泛得多。本章以钨极氩弧焊为典型,介绍钨极惰性气体保护焊,某些地方也对氦气和钨极氦弧焊特有的性能做了说明。

钨极氩弧焊按操作方式分为手工焊、半自动焊和自动焊三类。手工钨极氩弧焊时,焊枪的运动和添加填充焊丝完全靠手工操作;半自动钨极氩弧焊时,焊枪运动靠手工操作,但填充焊丝则由送丝机构自动送进;自动钨极氩弧焊时,如工件固定电弧运动,则焊枪安装在焊接小车上,小车的行走和填充焊丝可以用冷丝或热丝的方式添加。热丝是指提高熔敷速度。某些场合,例如薄板焊接或打底焊道,有时不必添加填充焊丝。

上述三种焊接方法中,手工钨极氩弧焊应用最广泛,半自动钨极氩氩弧焊则很少应用。

钨极氩弧焊时常被称为,是一种在非消耗性电极和工作物之间产生热量的电弧焊接方式;电极棒、溶池、电弧和工作物临近受热区域都是由气体状态的保护隔绝大气混入,此保护是由气体或混合气体流供应,必须是能提供全保护,因为甚至很微量的空气混入也会污染焊道。

钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法,其方法构成如图所示。焊接时氩气从焊枪的喷嘴中连续喷出,在电弧周围形成保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的氧化,从而获得优质的焊缝。焊接过程中根据工件的具体要求可以加或者不加填充焊丝。

氩弧焊管道内加丝的操作方法是什么?

详见《焊接技术能手绝技绝活》(化学工业出版社,2008):

§1-2 内填丝手工钨极氩弧焊操作技法

以下是部分内容

1 “内填丝”手工钨极氩弧焊工艺的主要特点

对口间隙介于摇摆滚动手工钨极氩弧焊和常规手工钨极氩弧焊之间,一般控制在3.5~4.5mm,对于高合金钢选用4.0-5.0mm,而常规手工钨极氩弧焊对口间隙为2.5~3.0mm。

碳钢和低合金钢采用Ф2.5mm实芯焊丝,高合金钢采用Ф1.6mm实芯焊丝。细直径焊丝的优点是焊枪在焊接时,其热源主要对准两侧的坡口,坡口熔化了,就可克服未熔合缺陷,热源的中心具有极高的峰值温度,焊枪摇摆,即可立即熔化焊丝,而不同于常规手工钨极氩弧焊,需要刻意用焊枪热源去熔化焊丝,从而极易产生坡口未熔合或层间未熔合。细直径焊丝还有一个好处是成形比粗直径焊丝美观,细直径焊丝的焊缝成形易出现有规则的鱼鳞状。

由于选用较大的对口间隙,很易克服焊缝中经常出现的未焊透缺陷。未焊透在手工钨极氩弧焊中是危险缺陷之一,压力容器或压力管道手工钨极氩弧焊不允许有未焊透缺陷。常规手工钨极氩弧焊工艺,由于选用较小的坡口间隙,坡口外加丝焊接,热源又处于坡口和焊丝的中间,通常会出现未焊透缺陷,造成根部返修。

焊枪的磁嘴与工件距离与常规手工钨极氩弧焊相同。

“内填丝”手工钨极氩弧焊工艺是在坡口内加热、熔化两侧坡口或首层焊缝,并移动控制热源及加热区,实现滚动前进,并分别控制送丝;对焊缝向前运动进行控制;对喷嘴的摆动角度控制。根部熔化情况比较直观。而常规手工钨极氩弧焊时焊枪为左右略作摆动或无摆动,移动控制分为;送丝控制,焊枪沿工件坡口或焊缝前进方向的控制,左右摆动的控制,喷嘴与工件距离的控制,根部熔化程度控制,根部熔化程度依靠经验来控制,这一控制特别困难,并且要求焊工有一定的操作技能,否则影响根部质量。因此,“内填丝”手工钨极氩弧焊工艺明显比常规手工钨极氩弧焊效果要好。

由于采用较大的间隙,使封底焊缝的背部成形很易做到高低、宽窄一致,特别是水平固定仰焊位置的内凹缺陷。在常规焊接方法中时钟5点至7点位置的凹陷是不易解决的一个问题。

焊接熔池左右推进可控制焊接层间温度,减少温度剧烈变化,防止各种焊接缺陷的产生。

采用适当的焊接收弧方法,收弧时将电弧快速摆动收敛,可避免常见的弧坑缺陷。

熄弧时电弧断开后,将氩气迅速移至收弧位置保持5-10秒后断气,有效地保护了未冷却的熔敷金属。

图1 内填丝和常规GTAW方法比较(略)

2 “内填丝”手工钨极氩弧焊的不足

“内填丝”手工钨极氩弧焊与摇摆滚动手工钨极氩弧焊相比有如下弱点:

没有可调的脉冲电源、高频引弧装置、衰减装置和滞后的氩气保护功能,需要通过焊工的熟练操作来完成优质的焊接工作。

“内填丝”手工钨极氩弧焊工艺还不能完全达到“摇摆法”工艺要求。摇摆滚动手工钨极氩弧焊时,焊枪紧靠工件,距离为零,焊工的操作稳定性增加。

“内填丝”手工钨极氩弧焊工艺焊接时间比普通氩弧焊大约慢5%-10%。

氩弧焊的热源和焊丝关联控制的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于氩弧焊时的热源和填充焊丝怎么控制、氩弧焊的热源和焊丝关联控制的信息别忘了在本站进行查找喔。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~