焊接资讯

您现在的位置是:首页 > 电池 > 正文

电池

清华大学固体氧化物燃料电池(清华大学氢燃料电池)

工品易达2022-11-06电池13

哪个学校的电池研究强,特别是燃料电池;电池材料的合成研究呢

国内进行燃料电池研究的高等院校有清华大学、上海交通大学、武汉理工大学等。实际上很多大学都在进行燃料电池的有关研究,只是研究的具体方向、深度和广度有区别而已。例如清华大学、武汉理工大学、中科院大连化学物理研究所的研究生院等机构在PEMFC(质子交换膜燃料电池)方面的研究比较著名,而华中科技大学就在进行SOFC(固体氧化物燃料电池)的研究,广州的中山大学在DMFC(直接甲醇燃料电池)方面已经取得一些成果。

如果对更具体的信息感兴趣,可以留一个QQ或邮箱联系。

请问全国有哪些机构在做燃料电池?固体氧化物燃料电池有前途吗?

国内进行燃料电池研究的高等院校有清华大学、上海交通大学、武汉理工大学等。实际上很多大学都在进行燃料电池的有关研究,只是研究的具体方向、深度和广度有区别而已。例如华中科技大学就在进行SOFC(固体氧化物燃料电池)的研究。

中科院大连化学物理研究所等机构对燃料电池的研究比较著名。

固体氧化物燃料电池有如下优点:(1)较高的电流密度和功率密度;(2)阳、阴极极化可忽略,彼化损失集中在电解质内阻降;(3)可直接使用氢气、烃类(甲烷)、甲醇等作燃料,而不必使用贵金属作催化剂;(4)避免了中、低温燃料电池的酸碱电解质或熔盐电解质的腐蚀及封接问题;(5)能提供高质余热,实现热电联产,燃料利用率高,能量利用率高达80%左右,是一种清洁高效的能源系统;(6)广泛采用陶瓷材料作电解质、阴极和阳极,具有全固态结构;(7)陶瓷电解质要求中、高温运行(600~1000℃),加快了电池的反应进行,还可以实现多种碳氢燃料气体的内部还原,简化了设备。

固体燃料电池哪个大学或机构做的好

固体燃料电池,国内做的比较好的,清华大学,北京理工大学,上海交通大学,同济大学,天津大学,中国科学技术大学,华南理工大学,华中科技大学,中国科学院

燃料电池行业深度报告:燃料电池汽车处于爆发前夕

1、氢能源:下一代基础性能源材料

国际能源转型一直沿着从高碳到低碳、从低密度到高密度的路径进行,而氢气是目前公认 的最为理想的能量载体和清洁能源提供者。氢气无毒无害,反应物为水,绿色清洁,热值高, 相当于汽油的三倍,被誉为“21 世纪的终极能源”。

短期:降低 汽车 尾气排放,城市环境保护。 以北京市为例,机动车排放了全市 58%的氮 氧化物、40%的挥发性有机物和 22%的细颗粒物。氢能源自柴油发动机应用的车辆市场 具有推广价值,而柴油发动机车辆在港口/码头、城市公交、跨城货运等领域带来显著的 污染。

中长期:降低石化能源对外依赖。 中国石油集团经济技术研究院发布《2018 年国内外油 气行业发展报告》中提到,2018 年中国的石油进口量为 4.4 亿吨,石油对外依存度升至 69.8%;天然气进口量 1254 亿立方米,对外依存度升至 45.3%。

2、我国具有全球最大规模的氢资源

工业氢气提纯具备充足的氢资源,我国氢气产能规模全球最大。 从氢气生产来源来看, 化石资源制氢居主导地位,全球主要人工制氢原料的 96%以上都来源于传统化石资源的热化学 重整,仅有 4%左右来源于电解水。从地域分布上看,亚太地区的氢气产能最大,而我国是目 前氢气产能最大的国家,也是氢气生产分布最广的国家。目前国际制氢年产量 6300 万吨左右, 我国每年产氢约 2200 万吨,占世界氢产量的三分之一,是世界第一产氢大国。

我国的煤炭和天然气资源储备丰富,以上两者也是我国人工制氢的主要原料,占比分别 为 62%和 19%。 随着煤制合成气、煤制油产业的发展,煤制氢产量逐年增多,其规模较大、成 本较低,制氢成本约 20 元/kg,煤气化制氢具有较大发展潜力。电解水制氢在我国氢气占比中 仅占约 4%,但在日本氢工业中占有特殊的地位,其盐水电解制氢的产能占日本所有人工制氢 总产能的 63%。

我国氢能资源在全球范围具有一定性价比优势。 目前我国加氢气成本大约在 70 元/kg, 较美国和日本在成本上仍较高,然而我国的汽油成本显著高于美国,从氢油比(氢气成本/汽 油成本)角度考虑有一定性价比优势。

我国氢能源的使用仍有极大待开发潜力。 当前我国大部分氢气应用于工业领域,主要被 合称氨、合成甲醇、石油炼化、回炉助燃灯消耗,属于自产自消的模式。每年仅有不到 500 吨的氢气对外部市场供应和销售,氢资源利用潜力巨大。

各类氢气来源存在一定的技术和成本差别,电解制氢与煤炭、天然气制氢成本仍有较大 差距。 氢气的制备主要可分为制取氢气和提纯氢气两大类,煤炭制氢成本最低,为 0.8 1.1 元/立方米,天然气制氢成本为 0.9 1.5 元/立方米,我国的电解制氢发展仍处早期,成本在 3 元/立方米左右,未来还有较大下降空间。

地方政府和能源企业对于工业氢气的利用有切实的发展意愿 。我国每年弃光、弃风、弃 水等大约有 1000 亿度电,工业副产氢也有 1000 万吨以上,对于这两个“1000”的利用,全国 多地政府和能源企业都已积极开展相应布局。

我国氢能利用已具备一定技术基础,从航天、军用逐渐向民用推广,在华北、华东和华 南等地区形成了氢能源区域产业集群。

航天领域: 航天 科技 集团六院北京 11 所研制的 YF-75 氢氧发动机。迄今为止,YF-75 发 动机已参加 97 次飞行任务。2004 年探月工程正式开展后,YF-75 发动机是嫦娥系列任务 中主力装备。2019 年嫦娥四号探测器首次在月球背面预选区域着陆,也由来自装备 YF-75 氢氧发动机的长三甲系列火箭完成。

军用领域: 中国船舶重工集团开发的燃料电池潜艇,从斯特林发动机替换为氢燃料电池, 基于质子交换膜燃料电池和金属储氢技术。

先进技术的民用化推广。 航天 科技 集团六院长期致力于氢能在火箭发动机领域的研究和 应用,在燃料电池技术领域,拥有质子交换膜燃料电池系统动力应用、可再生能源储能 应用及泵阀关键部件技术,具备了百千瓦级氢氧/氢空及再生燃料电池系统研制能力。中 船重工七一二所研发的首台 58 千瓦燃料电池发动机, 2019 年 5 月顺利通过中汽中心天 津 汽车 检测中心的强制性检验,这款型号为 CSIC712-FCE58A 的发动机,采用氢空质子交 换膜燃料电池电堆,是七一二所面向城市客车开发的燃料电池发动机。

1、氢能源的重要应用-燃料电池

氢能源为电力能源的重要载体 。电能替代是 社会 能源消费的长期趋势 ,氢能源最终通过 电力能源实现。合理利用氢能,一方面能提高能源利用效率,减少能源浪费,另一方面可以控 制环境污染,降低大气污染和温室气体排放。从中长期来看,加大氢能的发展利用将进一步保 障我国能源安全。 氢能源的单位热值远高于汽油、柴油、焦炭等,将满足电力能源的供给需求错配。

氢能 源的热值较高,通过大型移动的运输设备,未来将会使能源消耗错配做到极致。 氢能既可作为 化学能源形式的长周期储备,又可于交通领域应用在长途运输、大卡车、海洋运输等环节,还 可以应用在高温加热的工艺产业上。清华大学教授毛宗强在氢能行业会议上表示,氢能的应用 是多方面的,也是未来有望代替石油和天然气的清洁能源。

燃料电池 汽车 是氢能源利用极具成长性的下游行业。 虽然氢燃料电池 汽车 ( FCEVs )在 我国目前处于起步阶段,但燃料电池 汽车 性能的优秀不可否认,目前国外大规模销售的 FCEVs 各方面性能与内燃机 汽车 不相上下,有些远优于电动 汽车 (BEVs)。燃料电池具有环境友好、 发电效率高、噪音低、可用燃料范围广等优点,当前我国燃料电池产业的主要发展瓶颈在于生 产成本高(铂催化剂价格高昂)、技术水平较国际落后以及氢产业链配套设施不够成熟,远期 的发展空间巨大。

燃料电池 汽车 具有能源补给的时间优势和经济性劣势,运营市场将会是起步阶段重点发 展领域。 燃料电池 汽车 的续航里程普遍在 500 公里以上,和目前中高端纯电动 汽车 续航相当, 而从能源补给时间角度,燃料电池 汽车 加氢仅需不到 3 分钟,远低于插电混动或纯电动 汽车 。 由于目前燃料电池 汽车 产业发展仍处于初期阶段,加氢站等基础设施投入以及整车制造成本都 较高,短期来看燃料电池 汽车 比较适合的应用场景预计会是运营市场。

质子交换膜燃料电池对我国氢能产业发展更具有现实意义。 氢燃料电池按不同电解质可 分为碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池和质子交换膜 燃料电池(PEMFC)。其中,质子交换膜燃料电池的工作温度最低,还具有响应速度快和体积小 等特点,目前最契合新能源 汽车 的使用,被认为是未来燃料电池 汽车 最重要的发展方向之一。

锂电池在乘用车领域更具优势。 锂电池产品较燃料电池有更简单的产品结构,更清晰的 发展路径和更成熟的产业化分工,当前产品系列性能也区域丰富。锂电池性能的不断提升,正 逐渐蚕食众多原本燃料电池具有领先优势的应用领域。在 2019 年燃料电池行业会议中,上海 捷氢 科技 有限公司系统开发部总监表示,他们对比了纯电动车型和氢燃料电池 汽车 型在未来的 竞争优势,从成本上来说,乘用车续航里程 400 公里以下,燃料电池相对纯电动是没有优势的。

燃料电池的产业化应用,尚处于中长期能源战略布局的地位。

商用车领域燃料电池驱动定位为辅助能源: 潍柴动力董事长谭旭光表示:发展新能 源车并不是要完全取代柴油车,而是应用在适合采用新能源车辆的工况中。比如城 市公交、港口牵引车等,推广新能源车辆,使其与柴油车搭配工作,能够兼顾经济 效益与 社会 环保。他甚至预言,未来 20-30 年,氢将成为能源结构的重要组成部分, 但市占率不会超过 10%。

当前船舶动力 95%是柴油体系,尚未实现天然气化,燃料电池中长期或存增长空间 。 受成本、安全、寿命等多种因素影响,燃料电池在民用船舶领域目前尚不具备大规 模商业化应用的条件,但是随着国际公约法规对船舶排放要求的日益严格,燃料电 池系统卓越的排放性能有可能将其推向船舶动力市场的新风口,尤其是豪华游轮在 船舶行业逐渐崛起的今天,燃料电池系统噪音低的优势完美满足了豪华游轮对舒适 度的要求。

2、氢能源利用涉及到的关键技术

氢能源制取-混合气体的变压吸附技术(PSA)。

基本原理:变压吸附的基本原理是:利用吸附剂对气体的吸附有选择性,即不同的 气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量 随压力变化而变化的特性,实现气体混合物的分离和吸附剂的再生。

当前应用:变压吸附技术在石油化工、医药、食品饮料等行业具有广泛应用,四川 天一 科技 、上海化工研究所和北大先锋公司是国内领先的变压吸附系统设计建设机 构。在石化领域,PSA 法得到的氢气纯度可达到 99.9%以上水平(燃料电池需求纯度 为 99.99%)。上市公司:天科股份(西化院下属)。

氢能源运输-从拖车输送到管道输送。 目前钢企副产氢气是加氢站氢气的主要来源,其被 使用高压氢气瓶集束拖车运输。举例来说,若 1 辆拖车装有 18 个高压氢气瓶,每次可以以 20MPa 的压力运送 4000Nm3的氢气。平时站区里停泊 2 辆拖车,另有 1辆拖车往返加氢站和氢源之间, 运送氢气,并替换站内空车。基于 200km 左右运输距离和每天 10 吨的运输规模来测算,气氢 拖车的成本可以达到 2.02 元/kg。

氢能源运输-从高压气罐到管道输送。

高压气罐: 依托 LNG 产业基础,一般长管储氢压为 15 20MPa,一般单管储氢量为 17 20k,将 CNG 储气管进行产品升级可实现。

液氢储罐: 依托航天工业技术基础,单次送氢量为气罐 10 倍以上。额外增加氢气液 化和液氢罐成本,目前测算单日加氢量达到 1000kg 以上具有比较经济性。

管道运输: 依托天然气产业基础,瓶颈在成本。在美国,现有的氢气管道系统约为 2400 公里,而在欧洲已有近 1600 公里,中国的管道运氢量在 400 公里。中石油管道 局 2014年完成国内最大氢气管道建设施工:投资1.54亿,长度25km,设计压力 4Mpa, 年输氢量 10.04 万吨。单位投资为天然气管道 2 倍左右。

氢能源储存加注: 加氢站内的储氢罐通常采用低压(20 30MPa)、中压(30 40MPa)、高 压(40 75MPa)三级压力进行储存。有时氢气长管拖车也作为一级储气(10 20MPa)设施,构成 4 级储气的方式。国外市场大多采用的 70MPa 氢气,国内大部分采用了 35MPa 氢气压力标准。 目前中国的加氢站加氢能力最高的为 1000-2000kg/d,最低的为 100kg/d。

站内制氢 :原材料为天然气,重整制氢气。单个站投资规模会在 300~500 万美元的 水平。

外供加氢 :中国主要的加氢站方式。单个站投资规模在

我想问下研发燃料电池的上市公司有哪些?前景如何?

:燃料电池汽车是以氢作为燃料的新型汽车。它利用氢和从大气中吸取的氧进行反应产生电能,为高扭矩电动机提供能量,驱动车辆前进,其排放只有水,所以是名副其实的零排放汽车。此举成为21世纪能源革命的最大亮点,是我国解决燃油汽车能源短缺的有效途径,前景十分广阔。相关上市公司有:

[1]、金龙汽车(600686):

公司主营汽车产品及零配件,其大中型客车的市场占有率高。同时公司一直致力于新能源客车的研发,09年初,公司研制的新一代氢燃料电池城市客车在苏州下线,此举标志着国家“863计划十一五攻关项目:节能与新能源汽车”--氢燃料城市客车研发项目取得新突破。

[2]、上海汽车(600104):

公司为世博会提供了970辆新能源汽车,包括油电混合动力、超级电容车、燃料电池车和纯电动车四大门类。从目前运行情况看,出勤率最高达99%,市场反应良好;上海汽车的新能源汽车历史可追溯至2002年,彼时公司已开始研究未来汽车的技术发展路线,当时欧洲的基本路线是柴油化,美国走的是燃料电池路线。经过研究,上汽的技术路线明确为:在汽车驱动电动化的趋势下,上汽重点发展纯电动和混合电动,二者要尽快产业化;跟进燃料电池车,进行示范化运行。

[3]、长城电工(600192):

公司与中科院大连化学等共同设立大连新源动力股份公司,从事质子交换膜燃料电池开发生产。该公司依托中科院大连化物所自有知识产权的质子交换膜燃料电池技术,将以批量生产技术及多种燃料电池产品的开发,使其尽快商品化和产业化。新源动力是我国第一家致力于燃料电池产业化的股份制企业,承担了国家科技部863燃料电池重大专项。

注2:资料显示,质子交换膜燃料电池(PEMFC)是一种将氢气与空气中的氧气经催化反应后结合生成水并释放出电能的技术,具有高效环保等优点。PEMFC应用前景广阔,市场潜力巨大,对产业结构升级、环境保护及经济的可持续发展均有重要意义,这种技术已被美国、加拿大等发达国家认定为21世纪首选的清洁能源系统。

[4]、同济科技(600846):

公司(占36.23%股权)与中科院上海有机化学研究所、上海神力科技有限公司组建中科同力化工材料有限公司,该公司开发的质子交换膜制造燃料电池电动汽车。

[5]、新大洲A(000571):

公司控股的大连新源动力以中科院大连化学物理研究所"九五重点攻关项目"--质子交换膜燃料电池技术为依托,是中国燃料电池产业的旗舰,将建成5500KW燃料电池堆用关键部件的批量生产线,这也将成为我国第一个燃料电池材料及部件的产业化生产基地。新大洲控股的新源动力已在江苏和上海市投资设立了两个全资子公司,主攻新能源电池研发生产。

[6]、复星医药(600196):

公司控股子公司医药投资合计以5045.28万元受让神力科技36.26%股权,并以1000万元对其增资,完成后占注册资本38.808%。该公司氢动力项目系国家863项目,产品已进入生产阶段,已拥有270项专利成果,主要科研产品包括燃料电池轿车发动机(国家863重大专项成果)、燃料电池大巴发动机(国家863重大专项成果)等。

清华大学固体氧化物燃料电池的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于清华大学氢燃料电池、清华大学固体氧化物燃料电池的信息别忘了在本站进行查找喔。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~