焊接资讯

您现在的位置是:首页 > 特种焊丝 > 正文

特种焊丝

埋弧焊可以用钢代替焊丝(埋弧焊丝可以用于氩弧焊丝吗?)

工品易达2022-11-09特种焊丝12

用埋弧焊焊接δ=32的45号钢,用哪种焊丝和焊剂?具体焊接工艺?

1、用埋弧焊焊接δ=32的45号钢,可采用的焊丝是H08Mn2SiA或H10Mn2,焊剂可采用HJ360、HJ430、HJ431。

2、 对接接头双面焊 一般工件厚度从 10 ~ 40mm 的对接接头,通常采用双面焊。接头形式根据钢种、接头性能要求的不同,可采用 I 形、 Y 形、 X 形坡口。

3、焊接规范及其影响

埋弧焊最主要的焊接规范是焊接电流、焊接电压和焊接速度,其次是焊丝直

径、焊丝伸出长度、焊剂和焊丝类型、焊剂粒度和焊剂层厚度等。所有这些规范,对焊缝成形和焊接质量都有不同程度的影响(表1)此外,在同样焊接规范下焊件倾斜角度也直接影响焊缝成形。操作者必须知道这些规范的影响情况,才能正确选择和调节规范,焊出优质焊缝。

(1)焊接电流 焊接电流是埋弧焊最重要的规范,它直接决定焊丝熔化速

度、熔深和母材熔化量。

增大焊接电流可以加快焊丝熔化速度,提高焊接生产率。同时,电弧吹力随焊接电流而增大,熔池金属被电弧排开,使熔池底部未熔化母材受到电弧直接加

表1 焊接规范及其影响

焊缝特点 :当以下规范增大时的影响

焊接电流 焊接电压(伏) 焊接速度(米/时) 焊丝直径

1500(安)以内 由22~24

到32~34 由34~36

到50~60 10~40 40~100

熔深 显著增大 略增大 略减小 无变化 减小 减小

熔宽 略增大 增大 显著增大

(除直流正接) 减小 减小 增大

余高 显著增大 减小 减小 略增大 略增大 减小

形状系数 显著减小 增大 显著增大

(除直流正接) 减小 略减小 增大

熔合比 显著减小 略增大 无变化 显著增大 增大 减小

焊缝特点 当以下规范增大时的影响

焊丝前倾 焊件倾斜 间歇和坡口 焊剂粒度

上坡焊 下坡焊

熔深 显著减小 略增大 减小 无变化 略减小

熔宽 增大 略减小 增大 无变化 略增大

余高 减小 增大 减小 减小 略减小

形状系数 显著增大 减小 增大 无变化 增大

熔合比 减小 略增大 减小 减小 略减小

热,熔深增加。电流过大时会造成烧穿钢板,电流过大还会使焊缝余高过高,热影响区增大和引起较大焊接变形。

电流减小,熔深减小。电流过小时,容易产生未焊透,电弧稳定性不好。

电流变化对熔宽变化影响不大。

(2)焊接电压:焊接电压是焊丝端头与熔化金属表面间的电压,即电弧两

端的电压。由于这个电压难以测量,实际生产中是测量导电嘴与工件间的电压,可由机头上的电压表读出。当焊接电缆较长时,由于电流大,在电缆上有电压降,焊接电源上电压表的指示值,比机头上电压表的指示值要高1~2伏以上。调节焊接电压时,应根据机头上的电压表指示值进行。

焊接电压对焊丝熔化速度影响不大,但对焊缝横截面和外表成形有很大影响。

焊接电压增高时弧长增加,电弧的活动范围增大,熔宽增大,同时焊缝余高和熔深略为减小,焊缝变得平坦。电弧活动范围增大后,使焊剂熔化量增多,如果是含合金的烧结焊剂,向焊缝过渡的合金元素增多。当装配间隙略大时,增高电压有利于焊缝成形。

焊接电压过高,对接焊时会形成“蘑菇形”焊缝,容易在焊缝内产生裂纹;角焊时会造成咬边和凹陷焊缝。如果焊接电压继续增高,电弧会突破熔渣的覆盖,使熔化金属失去保护而与空气接触,造成密集气孔。

焊接电压降低时熔宽减小,焊缝变得高而窄。如果焊接电压过低,会造成母材熔化不足,焊缝成形不良和脱渣困难。

焊接电压应与焊接电流相适应(见表2)。焊接厚板深坡口焊缝和进行高速埋弧焊时,为了减小磁偏吹,焊接电压应选得低一些,以增大电弧的“刚性”。

表2 焊接电流与相应的焊接电压

焊接电流(安) 600~700 700~850 850~1000 1000~1200

焊接电压(伏) 34~36 36~38 38~40 40~42

(3)焊接速度:焊接速度对熔宽及熔深有明显的影响,在其他规范不变的

条件下,焊接速度增大时,电弧对母材的加热减少,熔宽明显减小。与此同时,电弧向后方排斥熔池金属的作用加强,电弧直接加热熔池低部的母材,使熔深略为增加。当焊接速度提高到40米/时以上时,由于电弧对母材加热量显著减少,熔深随焊接速度增大而减小。

焊接速度过高会造成咬边、未焊透、焊缝粗糙不平等缺陷。

降低焊接速度,熔池体积增大而存在时间增长,有利于气体浮出熔池,减小

形成气孔的倾向。但焊接速度过低会形成易裂的“蘑菇形”焊缝,或产生烧穿、夹渣、焊缝不规则等缺陷。

对于角焊缝,增大焊接速度可以提高生产率。对于开坡口的对接焊缝,焊接速度的变化对生产率的影响不大。

(4)焊丝直径: 焊丝直径主要影响熔深。在同样的焊接电流下,不同直径

的焊丝电流密度不同,直径较细的焊丝电流密度较大,电弧的吹力大熔深大。细焊丝时电流密度大,易于引弧。

焊丝越粗,允许采用的电流越大,生产率越高。当装配不良时,粗焊丝比细焊丝的操作性能好,有利于控制焊缝成形,不易烧穿。

焊丝直径应与所用的焊接电流大小相适应,如果粗焊丝用小电流焊接,会造成焊接电弧不稳定;相反,细焊丝用大电流焊接,容易形成“蘑菇形”焊缝,而且熔池不稳定,焊缝成形差。不同直径焊丝适用的焊接电流范围如表3 。

表3 不同直径焊丝适用的焊接电流

焊丝直径(毫米) 2 3 4 5 6

焊接电流(安) 200~400 350~600 500~800 700~1000 800~1200

电流密度(安/毫米) 63~125 50~85 40~63 36~50 28~42

临界电流(安) 280 300 530 700

(5)伸出长度:焊丝伸出长度是指焊丝伸出导电嘴部分的长度,就是导电

嘴下端到熔池表面的距离。为了测量方便,一般将导电嘴下端到焊件表面的距离作为伸出长度。

伸出导电嘴外的焊丝存在一定电阻,埋弧焊的焊接电流很大,在这部分焊丝

上产生的电阻热很大,焊丝受到的电阻热的预热,熔化速度增大,焊丝直径越细或伸出长度越长时,这种预热作用越大。所以,焊丝直径小于3mm时,要严格控制伸出长度;焊丝直径较粗时,伸出长度的影响较小,但也要控制在合适的范围内。伸出长度一般应为焊丝直径的6~10倍。对不锈钢焊丝等电阻较大的材料,伸出长度应小一些,以免焊丝过热。

伸出长度太短,电弧容易返烧到导电嘴上,如果导电嘴是铜材制成的时,焊缝会熔入铜而产生裂纹,所以伸出长度不宜过短。

2、确定规范时应考虑的因素

选择埋弧焊规范的基本原则,是在保证焊缝成形良好,内在质量和接头性能满足要求的前提下,尽可能提高生产率。切不能单纯追求生产率而盲目选用粗焊丝和大焊接电流,必须考虑各种规范之间的配合和每种规范的合理范围。通常要注意以下三方面:

(1)焊缝形状系数:每一道焊缝都有一定的熔宽(b)、熔深(t)和余高(h)

如下图。它们决定了焊缝截面的基本形状:焊缝是深而窄,或是宽而浅等。为了反映各种不同熔宽和熔深时的焊缝横截面形状,常采用焊缝形状系数(ψ)表示:

ψ=b/t

焊缝形状系数大的焊缝,其熔宽较熔深大,形状系数小的焊缝,熔宽相对熔深较小。焊缝形状系数过小的焊缝,焊缝深而窄,熔池凝固时,柱状结晶从两侧向中心生长,低熔点杂质不易从熔池中浮出,积聚在结晶交界面上形成薄弱的结合面,在收缩应力和外界拘束应力作用下,很可能在焊缝中心产生结晶裂纹。因此,选择埋弧焊规范时,要注意控制形状系数,一般以1.3~2左右为宜。

影响形状系数的主要规范,是焊接电压和焊接电流。焊接电流大时熔深大,这时如不相应增高焊接电压,焊缝形状系数就可能太小。当然,对于一定的焊接

电流,过分增高焊接电压也是不必要的,会使焊缝过宽或造成缺陷。埋弧焊时,与焊接电流相应的焊接电压范围见表5 。

表5 焊接电流与相应的焊接电压

焊接电流(安) 600~700 700~850 850~1000 1000~1200

焊接电压(伏) 34~36 38~38 38~40 40~42

(2)母材熔合比:埋弧焊缝是由熔化的母材及填充金属组成的,熔化的母

材在焊缝中所占的比例称为母材熔合比(r)见上图。Am表示焊缝中母材的熔化面积;At表示焊缝中填充金属的面积。则母材熔合比用下式表示:

r=Am/(Am+At)

通常母材中的含碳量和硫、磷杂质的含量比焊丝高,合金元素含量与焊丝也有差别。所以母材熔合比大的焊缝,由母材带入焊缝的碳量及杂质量较多;当母材合金元素与焊丝有较大差别时,母材对焊缝成分有较大影响。

依据焊接规范的不同,埋弧焊缝的母材熔合比为30%~60%。单道焊缝或多层焊时第一层焊缝,母材熔合比较大,母材容合比对焊缝塑性和韧性有很大影响,对于某些材料,应防止在第一层焊缝中熔入过多的母材,而降低焊缝的抗裂性。埋弧堆焊时,为了减少堆焊层数和保证堆焊层成分,必须减少熔合比。

生产中也有采用较大母材熔合比的情况,例如不开坡口埋弧对接焊时,母材熔合比较大,用合金元素含量较低的H08MnA或H08A焊丝,配焊剂431焊接16Mn钢,就可以保证焊缝得到合适的化学成分,保证足够的强度。

影响焊缝熔深的不同规范,对母材熔合比也都有影响,减小母材熔合比的常用措施有:减小焊接电流;采用下坡焊或焊丝前倾布置;用正极性焊接;增大焊丝伸出长度;用带极代替丝极堆焊;不开坡口焊接改成开坡口焊接等。

(3)线能量:焊接接头的性能除与母材和焊缝的化学成分有关外,还受到

焊接加热和冷却过程的影响。焊接时母材受电弧加热的程度,与焊接电弧的功率大小有直接关系,电弧功率是焊接电流和焊接电压的乘积,电弧功率越大,对母材的加热越强烈。但是,母材的加热程度还与电弧移动速度(即焊接速度)有关,焊接速度增大,每段焊缝得到的电弧热量相应减少。可以用线能量综合表示这三个因素的影响。线能量是单位长度焊缝(即焊缝中的任一小段焊缝)得到的电弧热量,用下式可以算出:

q=IU/V

式中 I — 焊接电流 (安);

U — 焊接电压 (伏);

V — 焊接速度 (厘米/秒)

q — 线能量 (焦耳/厘米)。

例如,焊接电流700安,焊接电压36伏,焊接速度1厘米/秒(36米/时)时,线能量为25200叫焦耳/厘米。

从线能量计算公式可以看出,线能量与焊接电流和焊接电压成正比,与焊接速度成反比。也就是说,焊接电流、焊接电压越高,线能量越大;焊接速度增大时,线能量减小。由于埋弧焊焊接电流和焊接速度能在较大范围中调节,线能量的变化范围比焊条电弧焊大得多。

线能量增大时,热影响区增大,过热区明显增宽,晶粒变粗,造成焊接接头的塑性和韧性下降。对于低合金钢,这种影响尤其显著。如果用大线能量焊接不锈钢,会使近缝区在“敏化区”范围停留时间增长,影响焊接接头抗晶间腐蚀的性能。焊接低温钢时,大线能量会造成焊接接头的低温冲击韧性明显降低。

所以,埋弧焊时,必须根据母材的性能特点和对焊接接头的要求,选择合适的线能量。

氩弧焊焊不锈钢用普通的钢丝可以吗

不可以的。

焊丝是作为填充金属或同时作为导电用的金属丝焊接材料。在气焊和钨极气体保护电弧焊时,焊丝用作填充金属;在埋弧焊、电渣焊和其他熔化极气体保护电弧焊时,焊丝既是填充金属,同时也是导电电极。焊丝的表面不涂防氧化作用的焊剂。而钢丝不具备这些条件,本身就不具备可焊性。如果用普通钢丝的话,高温氧化就会变成铁锈(Fe2O3)了,焊不上了。

 

 氩弧焊,是使用氩气作为保护气体的一种焊接技术。又称氩气体保护焊。就是在电弧焊的周围通上氩气保护气体,将空气隔离在焊区之外,防止焊区的氧化。

氩弧焊技术是在普通电弧焊的原理的基础上,利用氩气对金属焊材的保护,通过高电流使焊材在被焊基材上融化成液态形成熔池,使被焊金属和焊材达到冶金结合的一种焊接技术,由于在高温熔融焊接中不断送上氩气,使焊材不能和空气中的氧气接触,从而防止了焊材的氧化,因此可以焊接不锈钢、铁类五金金属。

埋弧焊的焊接材料有哪些?

埋伏焊接材料,有碳素钢焊丝,有合金钢焊丝,有高合金焊丝,还有焊剂等等,有实心焊丝,还有药芯焊丝

埋弧焊有什么优缺点?

埋弧自动焊接时,引燃电弧、送丝、电弧沿焊接方向移动及焊接收尾等过程完全由机械来完成。焊接过程是通过操作控制盘上的按钮开关来实现自动控制的。焊接过程中,在工件被焊处覆盖着一层30-50mm厚的粒状焊剂,连续送进的焊丝在焊剂层下与焊件间产生电弧,电弧的热量使焊丝、工件和焊剂熔化,形成金属熔池,使它们与空气隔绝。随着焊机自动向前移动,电弧不断熔化前方的焊件金属、焊丝及焊剂,而熔池后方的边缘开始冷却凝固形成焊缝,液态熔渣随后也冷凝形成坚硬的渣壳。焊丝和焊剂在焊接时的作用与手工电弧焊的焊条芯、焊条药皮一样。焊接不同的材料应选择不同成分的焊丝和焊剂。如焊接低碳钢时常用H08A焊丝,配用高锰高硅型焊剂HJ431等。焊接电源通常采用容量较大的弧焊变压器。 埋弧自动焊的主要优点是: (1)生产率高 埋弧焊的焊丝伸出长度(从导电嘴末端到电弧端部的焊丝长度)远较手工电弧焊的焊条短,一般在50mm左右,而且是光焊丝,不会因提高电流而造成焊条药皮发红问题,即可使用较大的电流(比手工焊大5-10倍),因此,熔深大,生产率较高。对于20mm以下的对接焊可以不开坡口,不留间隙,这就减少了填充金属的数量。 (2)焊缝质量高 对焊接熔池保护较完善,焊缝金属中杂质较少,只要焊接工艺选择恰当,较易获得稳定高质量的焊缝。 (3)劳动条件好 除了减轻手工操作的劳动强度外,电弧弧光埋在焊剂层下,没有弧光辐射,劳动条件较好。 埋弧自动焊至今仍然是工业生产中最常用的一种焊接方法。适于批量较大,较厚较长的直线及较大直径的环形焊缝的焊接。广泛应用于化工容器、锅炉、造船、桥梁等金属结构的制造。 这种方法也有不足之处,如不及手工焊灵活,一般只适合于水平位置或倾斜度不大的焊缝;工件边缘准备和装配质量要求较高、费工时;由于是埋弧操作,看不到熔池和焊缝形成过程,因此,必须严格控制焊接规范。

埋弧焊的原理是什么 ?

埋弧焊是利用电弧作为热源的焊接方法。埋弧焊时电弧是在一层颗粒状的可熔化焊剂覆盖下燃烧,电弧不外露,埋弧焊由此得名。所用的金属电极是不间断送进的光焊丝。

工作原理

图4—1是埋弧焊焊缝形成过程示意图。焊接电弧在焊丝与工件之间燃烧,电弧热将焊丝端部及电弧附近的母材和焊剂熔化。熔化的金属形成熔池,熔融的焊剂成为溶渣。熔池受熔渣和焊剂蒸汽的保护,不与空气接触。电弧向前移动时,电弧力将熔池中的液体金属推向熔池后方。在随后的冷却过程中,这部分液体金属凝固成焊缝。熔渣则凝固成渣壳,覆盖于焊缝表面。熔渣除了对熔池和焊缝金属起机械保护作用外,焊接过程中还与熔化金属发生冶金反应,从而影响焊缝金属的化学成分。

埋弧焊时,被焊工件与焊丝分别接在焊接电源的两极。焊丝通过与导电嘴的滑动接触与电源连接。焊接回路包括焊接电源、连接电缆、导电嘴、焊丝、电弧、熔池、工件等环节,焊丝端部在电弧热作用下不断熔化,因而焊丝应连续不断地送进,以保持焊接过程的稳定进行。焊丝的送进速度应与焊丝的熔化速度相平衡。焊丝一般由电动机驱动的送丝滚轮送进。随应用的不同,焊丝数目可以有单丝、双丝或多丝。有的应用中采用药芯焊丝代替实心焊丝,或是用钢带代替焊丝。

埋弧焊的优点和缺点

埋弧焊的主要优点

所用的焊接电流大,相应输入功率较大。加上焊剂和熔渣的隔热作用,热效率较高,熔深大。工件的坡口可较小,减少了填充金属量。单丝埋弧焊在工件不开坡口的情况下,一次可熔透20mm。

焊接速度高,以厚度8-10mm的钢板对接焊为例,单丝埋弧焊速度可达50-80cm/min,手工电弧焊则不超过10-13cm/mm。

焊剂的存在不仅能隔开融化金属与空气的接触,而且使熔池金属较慢凝固。液体金属与融化的焊剂有较多时间进行冶金反应,减少了焊缝中产生气孔、裂纹等缺陷的可能性。焊剂还可以向焊缝金属补充一些合金元素,提高焊缝金属的力学性能。

在有风的环境中焊接时,埋弧焊的保护效果比其他电弧焊方法好。

自动焊接时,焊接参数可通过自动调节保持稳定。与手工电弧相比,焊接质量对焊工技艺水平的依赖程度大大降低。

没有电弧光辐射,劳动条件较好。

埋弧焊的主要缺点

由于采用颗粒状焊剂,这种焊接方法一般只适用于平焊位置。其他位置焊接需采用特殊措施以保证焊剂能覆盖焊接区。

不能直接观察电弧与坡口的相对位置,如果没有采用焊缝自动跟踪装置,则容易焊偏。

埋弧焊电弧的电场强度较大,电流小于100A时电弧不稳,因而不适于焊接厚度小于1mm的薄板。

埋弧焊的使用范围

由于埋弧焊熔深大,生产率高,机械化操作的过程高,因而适于焊接中厚板结构的长焊缝。在造船、锅炉与压力容器、桥梁、起重机械、铁路车辆、工程机械、重型机械和冶金机械、核电站结构、海洋结构等制造部门有着广泛的应用,是当今焊接生产中最普遍使用的焊接方法之一。

埋弧焊除了用于金属结构中构件的连接外,还可在基体金属表面堆焊耐磨或耐腐蚀的合金层。

随着焊接冶金技术与焊接材料生产技术的发展,埋弧焊能焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢等以及某些有色金属,如镍基合金、钛合金、铜合金等。

第四节、埋弧焊的操作技术和安全特点

一、埋弧焊的操作技术

(一)埋弧焊工艺参数

埋弧焊焊接规范主要有焊接电流、电弧电压、焊接速度、焊丝直径等。

工艺参数主要有:焊丝伸出长度、电源种类和极性、装配间隙和坡口形式等。

选择埋弧焊焊接规范的原则是保证电弧稳定燃烧,焊缝形状尺寸符合要求,表面成形光洁整齐,内部无气孔、夹渣、裂纹、未焊透、焊瘤等缺陷。常用的选择方法有查表法、试验法、经验法、计算法。不管采用哪种方法所确定的参数,都必须在施焊中加以修正,达到最佳效果时方可连续焊接。

操作技术

对接直焊缝焊接技术

对接直焊缝的焊接方法有两种基本类型,即单面焊和双面焊。根据钢板厚度又可分为单层焊、多层焊,又有各种衬垫法和无衬垫法。

焊剂垫法埋弧自动焊。在焊接对接焊缝时,为了防止熔渣和熔池金属的泄漏,采用焊剂垫作为衬垫进行焊接。焊剂垫的焊剂与焊接用的焊剂相同。焊剂要与焊件背面贴紧,能够承受一定的均匀的托力。要选用较大的焊接规范,使工件熔透,以达到双面成形。

手工焊封底埋弧自动焊。对无法使用衬垫的焊缝,可先行用手工焊进行封底,然后再采用埋弧焊。

悬空焊。悬空焊一般用于无破口、无间隙的对接焊,它不用任何衬垫,装配间隙要求非常严格。为了保证焊透,正面焊时要焊透工件厚度的40%~50%,背面焊时必须保证焊透60%~70%。在实际操作中一般很难测出熔深,经常是靠焊接时观察熔池背面颜色来判断估计,所以要有一定的经验。

多层埋弧焊。对于较厚钢板,一次不能焊完的,可采用多层焊。第一层焊时,规范不要太大,既要保证焊透,又要避免裂纹等缺陷。每层焊缝的接头要错开,不可重叠。

埋弧焊可以用钢代替焊丝的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于埋弧焊丝可以用于氩弧焊丝吗?、埋弧焊可以用钢代替焊丝的信息别忘了在本站进行查找喔。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~