焊接资讯

您现在的位置是:首页 > 光伏 > 正文

光伏

小型太阳能光伏发电系统毕业论文_太阳能光伏发电原理与应用论文

工品易达2022-10-05光伏11

本文目录一览:

关于光伏发电的论文

一、项目概括

1.1项目简介及选址

本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。

本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。

图1-1 选址地卫星图

图1-2 选址平面图

1.2 项目位置及气象情况

经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。

图1-3湘潭市地理位置

图1-4年均总辐射值

1.3项目设计依据

本项目设计依据如下:

《光伏发电站设计规范》GB50794-2012

《电力工程电缆设计规范》GB50217-1994

《光伏系统并网技术要求》GB/T19939-2005

《建筑太阳能光伏系统设计与安装》10J908-5

《光伏发电站接入电力系统技术规范》GB/T19964-2012

《光伏发电站接入电力系统设计规范》GB/T5086-2013

《光伏(PV)系统电网接口特性》GB/T20046-2006

《电能质量公用电网谐波》GB/T14549-19933

《电能质量三相电压允许不平衡度》GB/T15543-1995

《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000

二、电站系统设计

2.1组件选型

组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。

组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。

单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。

表2-1伏组件对比表

组件品牌及型号

晶科

Swan Bifacial 400 72H

晶科

Swan Bifacial 405 72H

晶澳

JAM72S10 400MR

最大功率(Pmax)

400Wp

405Wp

400Wp

最佳工作电压(Vmp)

41V

41.2V

41.33V

组件转换效率(%)

19.54%

19.78%

19.9%

最佳工作电流(Imp)

9.76A

9.83A

9.68A

开路电压(Voc)

48.8V

49V

49.58V

短路电流(Isc)

10.24A

10.3A

10.33A

工作温度范围(℃)

-40℃~+85℃

-40℃~+85℃

-40℃~+85℃

最大系统电压

1000/1500V DC(IEC/UL)

1000/1500VDC(IEC/UL)

1000/1500VDC (IEC)

最大额定熔丝电流

20A

20A

20A

输出功率公差

0~+5W

0~+5W

0~+3%

最大功率(Pmax)的温度系数

-0.350%/℃

-0.35%/℃

-0.35%/℃

开路电压(Voc)的温度系数

-0.290%/℃

-0.29%/℃

-0.272%/℃

短路电流(Isc)的温度系数

0.048%/℃

0.048%/℃

0.044%/℃

名义电池工作温度(NOCT)

45±2℃

45±2℃

45±2℃

组件尺寸:长*宽*厚(mm)

2031*1008*30mm

2031*1008*30mm

2015*996*40mm

电池片数

72

72

72

第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。

第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。

综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。

图2-1 组件图

2.2最佳倾斜角和方位角设计

本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。

对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。

图2-2 PVsyst最佳方位角、倾斜角模拟图

2.3组件排布方式

本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。

图2-3 组件排列方式

2.4组件间距设计

太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。

图2-4间距图

在公式2-1中:

L是阵列倾斜面长度(4050mm)

D是阵列之间间距

β是阵列倾斜角(18°)

为当地纬度(27.96°)

把以上数值代入公式后计算得:

2-5组件计算图

根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。

图2-6方阵间距图

2.5逆变器选型

逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。

表2-2 逆变器参数对比表

逆变器品牌及型号

华为

SUN2000-100KTL-C1

华为

SUN2000-110KTL-C1

固德威

HT 100K

最大输入功率

100Kw

110Kw

150Kw

中国效率

98.1%

98.1%

98.1%

最大直流输入电压(V)

1100V

1100V

1100V

各MPPT最大输入电流(A)

26A

26A

28.5A

MPPT电压范围(V)

200 V ~ 1000 V

200 V ~ 1000 V

200V ~ 1000V

额定输入电压(V)

600V

600V

600V

MPPT数量/输入路数

10/20

10/20

10/2

额定输出功率(KW)

100K W

110K W

100K W

最大视在功率

110000 VA

121000 VA

110000 VA

最大有功功率 (cosφ=1)

110KW

121K W

110KW

额定输出电压

3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE

3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE

380, 3L/N/PE 或 3L/PE

输出电压频率

50 Hz,60Hz

50 Hz,60Hz

50 Hz

最大输出电流(A)

168.8A

185.7 A

167A

功率因数

0.8 超前—0.8 滞后

0.8超前—0.8滞后

0.99 (0.8超前—0.8滞后)

最大总谐波失真

<3%

<3%

3%

输入直流开关

支持

支持

支持

防孤岛保护

支持

支持

支持

输出过流保护

支持

支持

支持

输入反接保护

支持

支持

支持

组串故障检测

支持

支持

支持

直流浪涌保护

Type II

Class II

具备

交流浪涌保护

Type II

Class II

具备

绝缘阻抗检测

支持

支持

支持

残余电流监测

支持

支持

支持

尺寸(宽 x 高 x 厚)

1,035 x 700 x 365 mm

1,035 x 700 x 365 mm

1005*676*340

重量(kg)

85kg

85kg

93.5kg

工作温度(°C)

-25°C~60°C

-25°C~60°C

-25~60℃

3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。

第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。

第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。

本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。

2.6光伏阵列布置设计

2.6.1串并联设计

图2-7串并联计算

公式2-3、2-4中:

Kv——光伏组件的开路电压温度系数-0.00272

K——光伏组件的工作电压系数-0.0035

t/——光伏组件工作环境极限高温(℃)60

Vpm——光伏组件的工作电压(V)41.33

VMPPTmax——逆变器MPPT电压最大值(V)1000

VMPPTmin——逆变器MPPT电压最小值(V)200

Voc——光伏组件开路电压(V)49.58

N——光伏组件串联数(取整)

t——光伏组件工作环境极端低温(℃)-12.7

——逆变器允许的最大直流输入电压(V)1100

把以上数值代入公式中计算可得:

5.5≤N≤21

经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。

图2-8组件串并联设计图

2.6.2项目方阵排布

据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。

图2-9项目方阵排布图

2.7基础与支架设计

2.7.1水泥墩设计

本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。

考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。

图2-10水泥墩设计

图2-11电站整体水泥墩设计图

2.7.2支架设计

都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。

图2-12支架设计图

2.8配电箱选型

配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。

配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。

表2-3配电箱参数

项目名称

昌松100kw光伏交流配电箱

项目型号

100kw交流配电箱

额定功率

100KW

额定电流

780A

额定频率

50Hz

海拔高度

2500m

环境温度

-25~55℃

环境湿度

2%~95%,无凝霜

2.9电缆选配

电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。

直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆

交流电缆:

P:逆变器功率100KW

U:交流电电压380V

COSΦ:功率因数0.8

=

=190A

=0.035Ω

=976W

线损率:976/100000=0.9%2%,符合光伏电缆设计要求。

据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。

图2-13 电缆参数图

2.10防雷接地设计

防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。

本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。

图2-14防雷接地设计图

2.11电气系统设计及图纸

本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。

图2-15电气系统设计图

三、电站成本与收益

3.1电站项目设备清单

根据当地市场的物价,预估出了一个本电站预计投资表。

表3-1设备清单表

序号

设备

型号

单位

数量

单价

(元)

价格

(万元)

1

组件

晶澳JAM72S10 400MR

260

1.77

18.4

2

逆变器

固德威HT 100K

1

3.3w

3.3

3

直流电缆

PV1-F-1*4mm²

1500

5.2

0.78

4

交流电缆

ZRC-YJV22 70mm2

100

72

0.72

5

支架

39

556

2.17

6

水泥墩

500*500*500mm

78

250

1.95

7

配电箱

昌松100kw光伏交流配电箱

1

1.3w

1.3

8

运输费

18

1000

1.8

9

其他

4.15

10

人工费

7

合计:41.57万元

3.2电站年发电量计算

本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。

(式3-1)

Q=100*1116.6*0.8=89328度

Q——电站首年发电量

W——本项目电站总容量(85KW)

T——许昌市年日照小时数(1258.2H)

——系统综合效率(0.8)

任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。

表3-2电站发电量

发电年数

功率衰减

年末功率

年发电量(kWh)

累计发电量(kWh)

第1年

2.5%

97.50%

89328.000

89328.000

第2年

0.7%

96.80%

87094.800

176422.800

第3年

0.7%

96.10%

86469.504

262892.304

第4年

0.7%

95.40%

85844.208

348736.512

第5年

0.7%

94.70%

85218.912

433955.424

第6年

0.7%

94.00%

84593.616

518549.040

第7年

0.7%

93.30%

83968.320

602517.360

第8年

0.7%

92.60%

83343.024

685860.384

第9年

0.7%

91.90%

82717.728

768578.112

第10年

0.7%

91.20%

82092.432

850670.544

第11年

0.7%

90.50%

81467.136

932137.680

第12年

0.7%

89.80%

80841.840

1012979.520

第13年

0.7%

89.10%

80216.544

1093196.064

第14年

0.7%

88.40%

79591.248

1172787.312

第15年

0.7%

87.70%

78965.952

1251753.264

第16年

0.7%

87.00%

78340.656

1330093.920

第17年

0.7%

86.30%

77715.360

1407809.280

第18年

0.7%

85.60%

77090.064

1484899.344

第19年

0.7%

84.90%

76464.768

1561364.112

第20年

0.7%

84.20%

75839.472

1637203.584

第21年

0.7%

83.50%

75214.176

1712417.760

第22年

0.7%

82.80%

74588.880

1787006.640

第23年

0.7%

82.10%

73963.584

1860970.224

第24年

0.7%

81.40%

73338.288

1934308.512

第25年

0.7%

80.70%

72712.992

2007021.504

3.3电站预估收益计算

根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入

参考文献

[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.

[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.

[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.

[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.

[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.

[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.

[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.

[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.

[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.

[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.

[img]

太阳能光伏发电系统

白天,在光照条件下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求。再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电能贮存起来。晚上,蓄电池组为逆变器提供输入电,通过逆变器的作用,将直流电转换成交流电,输送到配电柜,由配电柜的切换作用进行供电。蓄电池组的放电情况由控制器进行控制,保证蓄电池的正常使用。光伏电站系统还应有限荷保护和防雷装置,以保护系统设备的过负载运行及免遭雷击,维护系统设备的安全使用。太阳能→电能→化学能→电能→光能。

太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料

太阳能光伏发电图

的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。

发电原理

编辑

太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。

(1)电池单元:由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,于是就有“光生电流”流过,太阳能电池组件就实现了对负载的功率P输出。

(2)电能储存单元:太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。

设置原理

编辑

太阳能光伏发电系统的设计需要考虑的因素:

1、 需要考虑太阳能光伏发电系统使用的地方以及该地日光辐射情况;

2、 需要考虑太阳能光伏发电系统需要承载的负载功率;

3、 系统所输出电压,以及考虑应该使用直流电还是交流电;

4、 系统每天需要工作的小时数;

5、 如遇到没有日光照射的阴雨天气,系统需连续供电多少天;

6、 考虑负载的情况,是纯电阻性、电容性还是电感性,启动电流的大小。

系统组成

编辑

光伏系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜、自动太阳能跟踪系统、自动太阳能组件除尘系统等设备组成。其各部分设备的作用是:

太阳能电池

在有光照(无论是太阳光,还是其它发光体产生的光照)情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏特效应”。在光生伏特效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。

原材料特点:

电池片:采用高效率(16.5%以上)的单晶硅太阳能片封装,保证太阳能电池板发电功率充足。

太阳能电池图

玻璃: 采用低铁钢化绒面玻璃(又称为白玻璃), 厚度3.2mm,在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200 nm的红外光有较高的反射率。此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。

EVA:采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.78mm的优质EVA膜层作为太阳电池的密封剂和与玻璃、TPT之间的连接剂。具有较高的透光率和抗老化能力。

TPT:太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。当然,此氟塑料膜首先具有太阳电池封装材料所要求的耐老化、耐腐蚀、不透气等基本要求。

边框:所采用的铝合金边框具有高强度,抗机械冲击能力强。也是家用太阳能发电中价值最高的部分。

蓄电池组

其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。太阳能电池发电对所用蓄电池组的基本要求是:a.自放电率低;b.使用寿命长;c.深放电能力强;d.充电效率高;e.少维护或免维护;f.工作温度范围宽;g.价格低廉。目前我国与太阳能发电系统配套使用的蓄电池主要是铅酸蓄电池和镉镍蓄电池。配套200Ah以上的铅酸蓄电池,一般选用固定式或工业密封式免维护铅酸蓄电池,每只蓄电池的额定电压为2VDC;配套200Ah以下的铅酸蓄电池,一般选用小型密封免维护铅酸蓄电池,每只蓄电池的额定电压为12VDC。

充放电控制器

是能自动防止蓄电池过充电和过放电的设备。由于蓄电池的循环充放电次数及放电深度是决定蓄电池使用寿命的重要因素,因此能控制蓄电池组过充电或过放电的充放电控制器是必不可少的设备。

逆变器

是将直流电转换成交流电的设备。由于太阳能电池和蓄电池是直流电源,而负载是交流负载时,逆变器是必不可少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统。逆变器按输出波型可分为方波逆变器和正弦波逆变器。方波逆变器电路简单,造价低,但谐波分量大,一般用于几百瓦以下和对谐波要求不高的系统。正弦波逆变器成本高,但可以适用于各种负载。

逆变器保护功能:a、 过载保护;b、短路保护;c、接反保护;d、欠压保护;e、过压保护;f、过热保护。

交流配电柜

其在电站系统的主要作用是对备用逆变器的切换功能,保证系统的正常供电,同时还有对线路电能的计量。

系统分类

编辑

太阳能光伏发电系统分为独立光伏发电系统、并网光伏发电系统及分布式光伏发电系统:

1、独立光伏发电系统也叫离网光伏发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。

2、并网光伏发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电这后直接接入公共电网。并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,发展难度较大。而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。

3、分布式光伏发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。

分布式光伏发电系统的基本设备包括光伏电池组件、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节。

系统优劣

编辑

优点

1、太阳能取之不尽,用之不竭,地球表面接受的太阳辐射能,能够满足全球能源需求的1万倍。只要在全球4%沙漠上安装太阳能光伏系统,所发电力就可以满足全球的需要。太阳能发电安全可靠,不会遭受能源危机或燃料市场不稳定的冲击;

2、太阳能随处可处,可就近供电,不必长距离输送,避免了长距离输电线路的损失;

3、太阳能不用燃料,运行成本很低;

4、太阳能发电没有运动部件,不易用损坏,维护简单,特别适合于无人值守情况下使用;

5、太阳能发电不会产生任何废弃物,没有污染、噪声等公害,对环境无不良影响,是理想的清洁能源;

6、太阳能发电系统建设周期短,方便灵活,而且可以根据负荷的增减,任意添加或减少太阳能方阵容量,避免浪费。

缺点

1、地面应用时有间歇性和随机性,发电量与气候条件有关,在晚上或阴雨天就不能或很少发电;

2、能量密度较低,标准条件下,地面上接收到的太阳辐射强度为1000W/M^2。大规格使用时,需要占用较大面积;

3、价格仍比较贵,为常规发电的3~15倍,初始投资高。

求光伏组件/太阳能电池 的伏安特性研究的毕业论文范文 ,,谢谢~~

基于P2N 结的太阳能电池伏安特性的分析与模拟

摘 要 通过分析实际P2N 结与理想模型之间的差别,建立了P2N 结二极管及太阳能电池的数学

模型;利用Matlab 中的系统仿真模块库建立仿真模型,设置参量,求解模型方程并绘制了图形1 对

太阳能电池在一定光照下旁路电阻及串联电阻取不同数值时对其开路电压、短路电流及填充因子

的影响做了模拟,并与实际测得的硅太阳能电池伏安特性进行了比较1 模型分析与实验测量的结

果表明:等效的旁路电阻和串联电阻分别影响电池的开路电压和短路电流1 仿真结果与实验测量

结果一致1

关键词 P2N 结;伏安特性;等效电路模型;太阳能电池

中图分类号 O475 文献标识码 A

0 引言

P2N结是许多微电子和光电子器件的核心部分1

这些半导体器件的电学特性及光电特性由P2N 结

的性质所决定,掌握P2N 结的性质是分析这些器件

特性的基础1 半导体导电是通过两种载流子的漂

移、扩散及产生与复合实现的[1 ]1 由于P2N 结的非

线性特性,其电流电压关系无法通过一个简单的解

析模型来确定1 虽然肖克莱方程给出了理想P2N

结的电流电压关系,但与实际器件的性质差别很大1

在实际器件中,由于表面效应、势垒区载流子的产生

及复合、电阻效应等因素的影响,其电流电压特性只

在很小的范围内接近理想值1 正向电压增大时, I2V

曲线由指数关系转变为线性关系1 反向电压增大

时,在一定范围内也是线性关系,反向电压过大还会

发生P2N 结的击穿1

本文通过一个简单的电路模型模拟了实际的

P2N 结,讨论了各实际参量对伏安特性的影响1 并

针对太阳能电池在一定光照下其实际参量如旁路电

阻和串联电阻对其开路电压、短路电流及填充因子

的影响,利用计算机对其伏安特性进行建模分析,以

获得接近实际器件的特性1

1 P2N结的伏安特性分析及等效电路

理想P2N 结模型满足小注入、突变耗尽层及玻

耳兹曼边界条件,且不考虑耗尽层中载流子的产生

和复合作用[2 ]1 其电流电压关系可由肖克莱方程给

出,即

J = J s exp

qV

k T

- 1 (1)

式中,V 为P2N 结两端的电压, J 为通过P2N 结的

电流密度, J s 为反向饱和电流1 当正向偏压较大

时,括号中的指数项远大于1 ,因而第二项可以忽

略,电流密度与电压呈指数增加关系1 反向偏压时,

当q| V | m k T 时, 指数项趋于0 , 电流不随电压改

变,趋于饱和值J s

1

实验测量发现,肖克莱方程与实际P2N 结的伏

安特性偏离较大,主要表现在两个方面:1) 正向电压

较小时,理论值比实验值小,正向电压较大时,J2V

关系变为线性关系;2) 反向偏压时,反向电流比理论

值大许多,反向电流不饱和,随反向偏压的增大略有

增加1 这说明理想模型不能真实反映实际器件的特

性,需要建立更为完善的P2N 结模型[3 ]1 在实际器

件中,载流子的产生、传输和复合会对P2N 结中的

空间电荷场产生影响[4 ] ,从而导致P2N 结电流电压

特性偏离理想方程1

正向偏压时,注入势垒区的载流子有一部分形

成复合电流,其大小与exp ( qV/ 2 k T) 成正比, 总电

流密度为扩散电流密度与复合电流密度之和1 对于

硅,在较低正向偏压下, 复合电流占主要地位, 因而

总电流大于理想条件下的电流,正向偏压较高时,复

合电流可以忽略

具体的去我们论坛看看吧!!

求一篇“光伏逆变器”的论文

太阳能光伏电源毕业论文设计

标签: 太阳能电池逆变器毕业论文校园

目录

摘要...

1

ABSTRACT.

2

1

绪论.... 3

2太阳能光伏电源系统的原理及组成...

4

2.1太阳能电池方阵...

4

2.1.1太阳能电池的工作原理...

5

2.1.2

太阳能电池的种类及区别... 5

2.1.3太阳能电池组件...

5

2.2

充放电控制器.... 6

2.2.1充放电控制器的功能...

7

2.2.2

充放电控制器的分类... 7

2.2.3

充放电控制器的工作原理... 8

2.3蓄电池组...

9

2.3.1太阳能光伏电源系统对蓄电池组的要求.... 9

2.3.2铅酸蓄电池组的结构.... 10

2.3.3铅酸蓄电池组的工作原理...

10

2.4直流-交流逆变器.... 11

2.4.1逆变器的分类...

11

2.4.2太阳能光伏电源系统对逆变器的要求...

12

2.4.3逆变器的主要性能指标...

12

2.4.4逆变器的功率转换电路的比较...

14

3太阳能光伏电源系统的设计原理及其影响因素...

16

3.1太阳能光伏电源系统的设计原理...

17

3.1.1太阳能光伏电源系统的软件设计...

17

3.1.2太阳能光伏电源系统的硬件设计...

19

3.2太阳能光伏电源系统的影响因素...

20

4

总结... 21

致谢...

参考文献...

摘要

光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上蓄电池组,充放电控制器,逆变器等部件就形成了光伏发电装置。本文首先介绍了太阳能光伏电源系统的原理及其组成,初步了解了光生伏打效应原理及其模块组成,然后进一步研究各功能模块的工作原理及其在系统中的作用,最后根据理论研究成果,利用硬件和软件相结合的方法设计出太阳能光伏电源系统,以及研究系统的影响因素。

关键词:光生伏特效应;太阳能电池组件;蓄电池组;充放电控制器;逆变器

Topic:

The Design of Photovoltaic Power

Abstract

Photovoltaic power generation is a technology of being

energy directly into electrical energy on semiconductor photo-voltaic effect

.The key components of this technology is the solar cell. Solar cells in series

can be formed after the package to protect a large area of solar cells, together

with the battery, charge and discharge controller, inverter and other components

to form a photovoltaic device. This paper introduces the principle of solar

photovoltaic power system and its components, a preliminary understanding of the

principle of photovoltaic effect and its modules, and then further study the

working principle of each functional module and its role in the system, the

final results of theoretical studies based the use of hardware and software

combination designed a solar photovoltaic power systems, and study the impact of

system factors.

Keywords : photo-voltaic effect; Solar cells; batteries; charge

and discharge controller;inverter.1 绪论人类社会进入21世纪,正面临着化石燃料短缺和生态环境污染的严重局面。廉价的石油时代已经结束,逐步改变能源消费结,大力发展可再生能源,走可持续发展的道路,已逐渐成为人们的共识。太阳能光伏发电具有独特的优点,近年来正在飞速发展。太阳能电池的产量年增长率在40%以上,已成为发展最迅速的高新技术产业之一,其应用规模和领域也在不断扩大,从原来只在偏远无电地区和特殊用电场合使用,发展到城市并网系统和大型光伏电站。尽管目前太阳能光伏发电在能源结构中所占比例还微不足道,但是随着社会的发展和技术的进步,其份额将会逐步增加,可以预期,到21世纪末,太阳能发电将成为世界能源供应的主体,一个光辉的太阳能时代将到来。我国的光伏产业发展极不平衡,2007年太阳能电池的产量已经超过日本和欧洲而居世界第一,然而光伏应用市场的发展却非常缓慢,光伏累计安装量大约只占世界的1%,应用技术水平与国外相比还有相当大的差距。光伏产品与一般机电产品不同,必须很据负载的要求和当地的气象、地理条件来决定系统的配置,由于目前光伏发电成本较高,所以应进行优化设计,以达到可靠性和经济性的最佳结合,最大限度的发挥光伏电源的作用。为了提高太阳能的转换效率,获取更多的有效能源,满足人类的能源供应,世界各国在研究太阳能光伏系统中都投入了大量的人力与物力。我国对太阳能光伏电源系统的研究还处于世界低等水平,产品的性能还有待提高,为迎接未来能源短缺带来的严峻挑战,我们应该加大对太阳能光伏系统的研究,以满足人类未来对能源的需求。本文从理论出发,阐述了太阳能光伏电源的原理及其组成结构;结合科研实际,应用硬件和软件结合的方法,设计了简易的太阳能光伏电源模拟系统。根据这个简易系统研究分析了太阳能光伏电源的影响因素,合理优化了系统的配置,以提高系统的性能,最终提高了太阳能的转换效率。

关于小型太阳能光伏发电系统毕业论文和太阳能光伏发电原理与应用论文的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~