焊接资讯

您现在的位置是:首页 > 焊机信息 > 正文

焊机信息

激光焊接焊洞有几种可能,关于激光焊接的问题。

工品易达2022-10-07焊机信息14

本文目录一览:

激光焊接机的焊接缺陷有哪些

对于任何设备,都会存在缺陷的,激光焊接机的常见焊接缺陷如下:

焊接缺陷——裂纹

激光焊接过程中,由于激光的热输入量较小,焊接变形量小和焊接产生的应力也较小,因此一般情况下不会产生高温裂纹。但是,由于材质的不同和工艺参数选择的不当,有时也会产生高温裂纹。

焊接缺陷——驱除与焊接性的改变

当进行中能量至高能量的激光束焊接时,需使用等离子控制器将熔池周围的离子化气体驱除,以确保焊道的再出现。而且在高反射性及高导热性材料如铝、铜及其合金等,在进行焊接时,焊接性会受激光所改变。

焊接缺陷——焊接飞溅

当激光焊接完成后,有些工件或材料表面上会出现很多金属颗粒,这些金属颗粒附着在工件或材料表面,不仅影响美观度,还影响使用。出现这种现象的原因在于工件或材料表面存在污渍,或者镀锌层。

焊接缺陷——焊瘤

当焊缝轨迹发生大的变化时,容易在转角处出现焊瘤或者不平整现象。出现这种现象的原因是焊缝的轨迹变化大,示教不均匀。这时就需要调整焊接参数,来连贯过度转角处的方法进行处理。

这就是激光焊接比较常见的焊接缺陷。除此之外,激光焊接的能量转换效率太低,通常低于10%,且它的焊接设备都较为昂贵。这些都是它的缺陷,但就像是人无完人一样,设备技术肯定也没有十全十美的,只能通过研发创新,不断地进行完善。

激光焊接有哪些原因可能导致气孔产生?

激光焊接过程中出现气孔,有可能是焊接之前的清洗过程工件表面没有彻底清洗干净,焊接时在高温作用下油污中的碳氢化合物会分离,碳与氧结合生成CO,从而间接导致焊接气孔。 可利用CleanoSpector 表面清洁度仪对量化测试一下工件的表面清洁度,看看是否RFU值超过指标。基于RFU值,能避免人为主观判断带来的影响。

激光 焊接是为何会有 气孔?

异物进入焊接过程,是激光焊接产生气孔的主要原因。因此工件、焊丝、保护气体的纯净非常重要;

激光点焊常出现的不良类型有那些

虚焊(焊接没有达到应有的强度,或者电流等不能有效导通);

过焊(激光能量过强或能量密度不均匀形成比较大的凹坑);

焊点位置偏移(激光与待焊接部分偏差较大,未对准);

焊点不美观(激光光斑不规则或能量密度不均匀造成);

焊点边缘凸出且毛刺多(焊接能量过大或者脉冲点过多,脉宽太窄等);

热裂纹(同材料及焊接工艺有关);

气孔(同材料及焊接工艺有关);

焊点焦痕明显(没有保护气体或保护气体不足)

主要的就是这几种,针对不同材料,还有不同的细节问题,希望能帮到你。

激光焊接工艺方法有哪些

一、激光焊接工艺参数:

1、功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。

2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。

4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。

二、激光焊接工艺方法:

1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

2、丝与丝的焊接。包括丝与丝对焊、交叉焊、平行搭接焊、T型焊等4种工艺方法。

3、金属丝与块状元件的焊接。采用激光焊接可以成功的实现金属丝与块状元件的连接,块状元件的尺寸可以任意。在焊接中应注意丝状元件的几何尺寸。

4、不同金属的焊接。焊接不同类型的金属要解决可焊性与可焊参数范围。不同材料之间的激光焊接只有某些特定的材料组合才有可能。 激光钎焊 有些元件的连接不宜采用激光熔焊,但可利用激光作为热源,施行软钎焊与硬钎焊,同样具有激光熔焊的优点。采用钎焊的方式有多种,其中,激光软钎焊主要用于印刷电路板的焊接,尤其实用于片状元件组装技术。

三、采用激光软钎焊与其它方式相比有以下优点:

1、由于是局部加热,元件不易产生热损伤,热影响区小,因此可在热敏元件附近施行软钎焊。

2、用非接触加热,熔化带宽,不需要任何辅助工具,可在双面印刷电路板上双面元件装备后加工。

3、重复操作稳定性好。焊剂对焊接工具污染小,且激光照射时间和输出功率易于控制,激光钎焊成品率高。

4、激光束易于实现分光,可用半透镜、反射镜、棱镜、扫描镜等光学元件进行时间与空间分割,能实现多点同时对称焊。

5、激光钎焊多用波长1.06um的激光作为热源,可用光纤传输,因此可在常规方式不易焊接的部位进行加工,灵活性好。

6、聚焦性好,易于实现多工位装置的自动化。

四、激光深熔焊:

1、冶金过程及工艺理论。 激光深熔焊冶金物理过程与电子束焊极为相似,即能量转换机制是通过“小孔”结构来完成的。在足够高的功率密度光束照射下,材料产生蒸发形成小孔。这个充满蒸汽的小孔犹如一个黑体,几乎全部吸收入射光线的能量,孔腔内平衡温度达25000度左右。热量从这个高温孔腔外壁传递出来,使包围着这个孔腔的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周即围着固体材料。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外材料在连续流动,随着光束移动,小孔始终处于流动的稳定态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属填充着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。

激光焊接常见的焊接缺陷有哪些

溢流:焊缝的金属熔池过大,或者熔池位置不正确,使得熔化的金属外溢,外溢的金属又与母材熔合。

弧坑:电弧焊时在焊缝的末端(熄弧处)或焊条接续处(起弧处)低于焊道基体表面的凹坑,在这种凹坑中很容易产生气孔和微裂纹。

焊偏:在焊缝横截面上显示为焊道偏斜或扭曲。

加强高(也称为焊冠、盖面)过高:焊道盖面层高出母材表面很多,一般焊接工艺对于加强高的高度是有规定的,高出规定值后,加强高与母材的结合转角很容易成为应力集中处,对结构承载不利。

以上的外部缺陷多容易使焊件承载后产生应力集中点,或者减小了焊缝的有效截面积而使得焊缝强度降低,因此在焊接工艺上一般都有明确的规定,并且常常采用目视检查即可发现这些外部缺陷。

关于激光焊接焊洞有几种可能和关于激光焊接的问题的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~