焊接资讯

您现在的位置是:首页 > 焊机信息 > 正文

焊机信息

真空激光焊接技术的研究,激光焊接研究现状。

工品易达2022-10-07焊机信息16

本文目录一览:

真空电子束焊接TA15注意哪些?怎样控制焊接缺陷?

激光焊接 1、 激光:

激发电子或分子使其在转换成能量的过程中产生集中且相位相同的光束,Laser来自Light Amplification by Stimulated Emission Radiation的第一个字母所组成。

2、 激光设备:

由光学震荡器及放在震荡器空穴两端镜间的介质所组成。介质受到激发至高能量状态时,开始产生同相位光波且在两端镜间来回反射,形成光电的串结效应,将光波放大,并获得足够能量而开始发射出激光。

激光亦可解释成将电能、化学能、热能、光能或核能等原始能源转换成某些特定光频(紫外光、可见光或红外光的电磁辐射束的一种设备。转换形态在某些固态、液态或气态介质中很容易进行。当这些介质以原子或分子形态被激发,便产生相位几乎相同且近乎单一波长的光束-----激光。由于具同相位及单一波长,差异角均非常小,在被高度集中以提供焊接、切割及热处理等功能前可传送的距离相当长。

3、 发展过程:

世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒 所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达10^6瓦,但仍属于低能量输出。

使用钕(ND)为激发元素的钇铝石榴石晶棒(Nd:YAG)可产生1---8KW的连续单一波长光束。YAG激光,波长为1.06uM,可以通过柔性光纤连接到激光加工头,设备布局灵活,适用焊接厚度0.5-6mm。

使用CO2为激发物的CO2激光(波长10.6uM),输出能量可达25KW,可做出2mm板厚单道全渗透焊接,工业界已广泛用于金属的加工上。

4、焊接特性:

属于熔融焊接,以激光束为能源,冲击在焊件接头上。

激光束可由平面光学元件(如镜子)导引,随后再以反射聚焦元件或镜片将光束投射在焊缝上。

激光焊接属非接触式焊接,作业过程不需加压,但需使用惰性气体以防熔池氧化,填料金属偶有使用。

激光焊可以与MIG焊组成激光MIG复合焊,实现大熔深焊接,同时热输入量比MIG焊大为减小。

5、激光焊接的主要优点:

(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。

(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。

(3)不需使用电极,没有电极污染或受损的顾虑。且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。

(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。

(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。

(6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件,

(7)可焊材质种类范围大,亦可相互接合各种异质材料。

(8)易于以自动化进行高速焊接,亦可以数位或电脑控制。

(9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。

(10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件。

(11)可焊接不同物性(如不同电阻)的两种金属

(12)不需真空,亦不需做X射线防护。

(13)若以穿孔式焊接,焊道深一宽比可达10:1

(14)可以切换装置将激光束传送至多个工作站。

6、激光焊接的主要缺点:

(1)焊件位置需非常精确,务必在激光束的聚焦范围内。

(2)焊件需使用夹治具时,必须确保焊件的最终位置需与激光束将冲击的焊点对准。

(3)最大可焊厚度受到限制渗透厚度远超过19mm的工件,生产线上不适合使用激光焊接。

(4)高反射性及高导热性材料如铝、铜及其合金等,焊接性会受激光所改变。

(5)当进行中能量至高能量的激光束焊接时,需使用等离子控制器将熔池周围的离子化气体驱除,以确保焊道的再出现。

(6)能量转换效率太低,通常低于10%。

(7)焊道快速凝固,可能有气孔及脆化的顾虑。

(8)设备昂贵。

7、激光焊接工艺增强技术:

为了消除或减少激光焊接的缺陷,更好地应用这一优秀的焊接方法,提出了一些用其它热源与激光进行复合焊接的工艺,主要有激光与电弧、激光与等离子弧、激光与感应热源复合焊接、双激光束焊接以及多光束激光焊接等。此外还提出了各种辅助工艺措施,如激光填丝焊(可细分为冷丝焊和热丝焊)、外加磁场辅助增强激光焊、保护气控制熔池深度激光焊、激光辅助搅拌摩擦焊等。

8、激光焊接的工艺参数。

(1)功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在10^4~10^6W/CM^2。

(2)激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

(3)激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。

(4)离焦量对焊接质量的影响。 激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。

9、 激光焊国内外发展状况

20世纪80年代中期,激光焊接作为新技术在欧洲、美国、日本得到了广泛的关注。1985年德国蒂森钢铁公司与德国大众汽车公司合作,在Audi100车身上成功采用了全球第一块激光拼焊板。90年代欧洲、北美、日本各大汽车生产厂开始在车身制造中大规模使用激光拼焊板技术。目前,无论实验室还是汽车制造厂的实践经验,均证明了拼焊板可以成功地应用于汽车车身的制造。

激光拼焊是采用激光能源,将若干不同材质、不同厚度、不同涂层的钢材、不锈钢材、铝合金材等进行自动拼合和焊接而形成一块整体板材、型材、夹芯板等,以满足零部件对材料性能的不同要求,用最轻的重量、最优结构和最佳性能实现装备轻量化。在欧美等发达国家,激光拼焊不仅在交通运输装备制造业中被使用,还在建筑业、桥梁、家电板材焊接生产、轧钢线钢板焊接(连续轧制中的钢板连接)等领域中被大量使用。

世界著名的激光焊接企业有瑞士Soudonic公司、法国阿赛洛钢铁集团、德国蒂森克虏伯集团TWB公司、加拿大Servo-Robot公司、德国Precitec公司等。

中国的激光拼焊板技术应用刚刚起步,2002年10月25日,中国第一条激光拼焊板专业化商业生产线正式投入运行,由武汉蒂森克虏伯中人激光拼焊从德国蒂森克虏伯集团TWB公司引进。此后上海宝钢阿赛洛激光拼焊公司、一汽宝友激光拼焊有限公司等相继投产。

中科院沈阳自动化研究所与日本石川岛播磨重工株式会社进行国际合作,遵循国家引进消化后再创新的科技发展战略,攻克激光拼焊若干个关键技术,于2006年9月开发出国内第一套激光拼焊成套生产线,并成功开发了机器人激光焊接系统,实现了平面和空间曲线的激光焊接。

激光焊接技术的优缺点有哪些

近年来,受益于激光技术进步,激光焊接设备在各行业渗透率不断提高,同时激光焊接设备下游应用的新能源汽车、锂电池、显示面板、手机消费电子、航空航天等领域需求旺盛,我国激光焊接设备保持稳定增长。激光焊接是利用高能量密度的激光束作为热源的一种高效精密焊接方法。激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。

 1. 大功率YAG激光焊接

随着激光器不断地发展进步,光纤激光器、盘式激光器相继问世,新型激光器的出现,带来的不仅是更稳定的光束质量,还有更大的能量。万瓦级激光器为激 光焊接提供了更为广阔的应用空间,为实现较厚结构件的拼接、搭接以及高反射率金属材料的激光焊接打开了突破口。因此,大功率必定成为今后激光焊接技术发展 应用的一个主要的方向。

2. 激光焊接过程实时监测

激光焊接时放出的光、蒸气和等离子体、熔池压力变化引起的声音、焊件中机械应力引起的超声波、金属蒸气或等离子介电常数、反射激光功率、熔池及小孔 的行为都在一定程度上反映了焊接过程的机理,对其进行直接观察及分析,一方面可以实现焊接自动化,另一方面可以直观地了解焊接过程,有助于研究焊接机理从 而更好地控制缺陷。

3. 铝合金激光焊接的研究

铝合金作为航空材料中使用较多的材料,其激光焊接一直处于一个比较尴尬的局面:一方面,激光焊接铝合金变形小且能实现减重20%左右,另一方面,由 于铝合金的特性,对光的反射强,散热快,而且容易产生气孔等缺陷。因此,铝合金的激光焊接的研究倍受关注,并将作为激光焊接在航空制造业中急待改进发展的技术方向之一。

4. 多种激光焊接方法的应用

随着激光焊接技术的发展,单一的激光焊接技术已经远远不能满足针对不同材料、不同结构件的焊接需要,应运而生的则是各种新焊接方法的创新及研究。依靠新出现的激光焊接方法或者多种方法的复合,希望能解决目前激光焊接中所遇到的问题。

5. 激光焊接设备在汽车行业中的应用

激光焊接设备对传统的汽车焊接工艺带来了冲击性的影响,各大汽车公司对此都抱有十分积极的态度,采用新技术就意味着更强的竞争力,激光焊接设备在焊接铝材,用焊接件代替铸件以及全车身构架结构焊接的应用前途最大。机床附件生产厂家应该抓住商机,在激光设备所用的工程塑料拖链、防护罩等方面下功夫。拖链、防护罩有效的保护激光焊接设备的电线、电缆,导轨。特别适用于激光加工车间和自动化生产线。更适合汽车生产线的需要。

如今国家已经在全趋势发展过程中,激光焊接设备更是加工业,粉未冶金,汽车产业等这种制造行业的头等大事,随之世界经济的慢慢复苏和在我国经济发展的不断迅速发展趋势,激光焊接设备的需要量将逐渐提升。激光焊接设备的产供销公司应把握住这一整好机会,深化推进原来销售市场,并勤奋发展更宽阔的潜在性销售市场。 博联特科技有限公司作为国内激光技术的佼佼者,与众多优质厂商长期保持着良好的合作关系,有幸为市场提供先进激光加工技术的机会,为激光行业贡献一份绵薄之力。

武汉博联特科技有限公司,激光设备行业的领先者。网址:

激光焊接、电子束焊接、超声波焊接与电弧焊等传统焊接方法有何区别?

网上资料,供参考。

焊接是一种连接金属或热塑性塑料的制造或雕塑过程。焊接过程中,工件和焊料熔化形成熔融区域(熔池),熔池冷却凝固後便形成材料之间的连接。这一过程中,通常还需要施加压力。普通焊接与硬钎焊(brazing)和软钎焊(soldering)的区别在於软钎焊通过融化熔点较低(低於工件本身的熔点)的焊料来形成连接,无需加热熔化工件本身。

焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。除了在工厂中使用外,焊接还可以在多种环境下进行,如野外、水下和太空。无论在何处,焊接都可能给操作者带来危险,所以在进行焊接时必须采取适当的防护措施。焊接给人体可能造成的伤害包括烧伤、触电、视力损害、吸入有毒气体、紫外线照射过度等。

19世纪末之前,唯一的焊接工艺是铁匠沿用了数百年的金属锻焊。最早的现代焊接技术出现在19世纪末,先是弧焊和氧燃气焊,稍后出现了电阻焊。20世纪早期,第一次世界大战和第二次世界大战中对军用设备的需求量很大,与之相应的廉价可靠的金属连接工艺受到重视,进而促进了焊接技术的发展。战后,先后出现了几种现代焊接技术,包括目前最流行的手工电弧焊、以及诸如熔化极气体保护电弧焊、埋弧焊、药芯焊丝电弧焊和电渣焊这样的自动或半自动焊接技术。20世纪下半叶,焊接技术的发展日新月异,激光焊接和电子束焊接被开发出来。今天,焊接机器人在工业生产中得到了广泛的应用。研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,并进一步提高焊接质量。

弧焊

弧焊(Arc welding)使用焊接电源来创造并维持电极和焊接材料之间的电弧,使焊点上的金属融化形成熔池。它们可以使用直流电或交流电,使用消耗性或非消耗性电极。有时在熔池附近会引入某种惰性或半惰性气体,即保护气体,有时还会添加焊补材料。

弧焊过程要消耗大量的电能,可以通过多种焊接电源来供应能量。最常见的焊接电源包括恒流电源和恒压电源。在弧焊过程中,所施加的电压决定电弧的长度,所输入的电流则决定输出的热量。恒流电源输出恒定的电流和波动的电压,多用于人工焊接,如手工电弧焊和钨极气体保护电弧焊。因为人工焊接要求电流保持相对稳定,而在实际操作中,电极的位置很难保证不变,弧长和电压也会随之发生变化。恒压电源输出恒定的电压和波动的电流,因此常用于自动焊接工艺,如熔化极气体保护电弧焊、药芯焊丝电弧焊和埋弧焊。在这些焊接工艺中中,电弧长度保持恒定,因为焊头和工件之间距离发生的任何波动都通过电流的变化来弥补。例如,如果焊头和工件的间隔过近,电流将急速增大,使得焊点处发热量骤增,焊头部分融化直至间隔恢复到原来的程度。

所用的电的类型对焊接有很大影响。耗电量大的焊接工艺,如手工电弧焊和熔化极气体保护电弧焊通常使用直流电,电极可接正极或负极。在焊接中,接正极的部分会有更大的热量集中,因此,改变电极的极性将影响到焊接性能。如果是工件接正极,工件将更热,焊接深度和焊接速度也会大大提高。反之,工件接负极的话将焊出较浅的焊缝。 耗电量较小的焊接工艺,如钨极气体保护电弧焊,可以通直流电(采用任意接头方式),也可以使用交流电。然而,这些焊接工艺所采用的电极都是只产生电弧而不提供焊料的,因此在使用直流电时,接正电极的时候,焊接深度较浅,而接负电极时能产生更深的焊缝。交流电使电极的极性迅速变化,从而将生成中等穿透程度的焊缝。使用交流电的缺点之一是,每一次变化的电压通过电压零点后,电弧必须重新点燃,为解决这一问题,一些特殊的焊接电源产生的是方波型的交流电,而不是通常的正弦波型,使得电压变化通过零点时的负面影响降到最小。

手工电弧焊

手工电弧焊(Shielded metal arc welding,SMAW)是最常见的焊接工艺。在焊接材料和消耗性的焊条之间,通过施加高电压来形成电弧,焊条的芯部分通常由钢制成,外层包覆有一层助焊剂。在焊接过程中,助焊剂燃烧产生二氧化碳,保护焊缝区免受氧化和污染。电极芯则直接充当填充材料,不需要另外添加焊料。

这种工艺的适应面很广,所需的设备也相对便宜,非常适合现场和户外作业。操作者只需接受少量的培训便可熟练掌握。焊接时间较慢,因为消耗性的焊条电极必须经常更换。焊接后还需要清除助焊剂形成的焊渣。此外,这一技术通常只用于焊接黑色金属,焊铸铁、镍、铝、铜等金属时需要使用特殊焊条。缺乏经验的操作者还往往难以掌握特殊位置的焊接。

熔化极气体保护电弧焊(Gas metal arc welding,GMAW) ,又称为金属-惰性气体焊或MIG焊,是一种半自动或自动的焊接工艺。它采用焊条连续送丝作为电极,并用惰性或半惰性的混合气体保护焊点。和手工电弧焊相似,操作者稍加培训就能熟练掌握。由于焊丝供应是连续的,熔化极气体保护电弧焊和手工电弧焊相比能获得更高的焊接速度。此外,因其电弧相对手工电弧焊较小,熔化极气体保护电弧焊更适合进行特殊位置焊接(如仰焊)。

和手工电弧焊相比,熔化极气体保护电弧焊所需的设备要复杂和昂贵得多,安装过程也比较繁琐。因此,熔化极气体保护电弧焊的便携性和通用性并不好,而且由于必须使用保护气体,并不是特别适合于户外作业。但是,熔化极气体保护电弧焊的焊接速度较快,非常适合工厂化大规模焊接。这一工艺适用于多种金属,包括黑色和有色金属。

另一种相似的技术是药芯焊丝电弧焊(Flux-cored arc welding,FCAW),它使用和熔化极气体保护电弧焊相似的设备,但采用敷盖粉末材料的钢质电极芯的焊条。和标准的实心焊条相比,这种焊丝更加昂贵,在焊接中会产生烟和焊渣,但使用它可以获得更高的焊接速度和更大的焊深。

钨极气体保护电弧焊(Gas tungsten arc welding,GTAW),或称钨-惰性气体(TIG焊)焊接(有时误称为氦弧焊),是一种手工焊接工艺。它采用非消耗性的钨电极,惰性或半惰性的保护气体,以及额外的焊料。这种工艺拥有稳定的电弧和较高的焊接质量,特别适用于焊接板料,但这一工艺对操作者的要求较高,焊接速度相对较低。

钨极气体保护电弧焊几乎适用于所有的可焊金属,最常用于焊接不锈钢和轻金属。它往往用于焊接那些对焊接质量要求较高的产品,如自行车、飞机和海上作业工具。与之类似的是等离子弧焊(Plasma arc welding,PAW),它采用钨电极和等离子气体来生成电弧。等离子弧焊的电弧相对于钨极气体保护电弧焊更集中,使对等离子弧焊的横向控制显得尤为重要,因此这一技术对机械系统的要求较高。由于其电流较稳定,该方法与钨极气体保护电弧焊相比,焊深更大,焊接速度更快。它能够焊接钨极气体保护电弧焊所能焊接的几乎所有金属,唯一不能焊接的是镁。不锈钢自动焊接是等离子弧焊的重要应用。该工艺的一种变种是等离子切割,适用于钢的切割。

埋弧焊(Submerged arc welding,SAW),是一种高效率的焊接工艺。埋弧焊的电弧是在助焊剂内部生成的,由于助焊剂阻隔了大气的影响,焊接质量因此得以大大提升。埋弧焊的焊渣往往能够自行脱落,无需清理焊渣。埋弧焊可以通过采用自动送丝装置来实现自动焊接,这样可以获得极高的焊接速度。由于电弧隐藏在助焊剂之下,几乎不产生烟雾,埋弧焊的工作环境大大好于其他弧焊工艺。这一工艺常用于工业生产,尤其是在制造大型产品和压力容器时。其他的弧焊工艺包括原子氢焊(Atomic hydrogen welding,AHW)、碳弧焊(Carbon arc welding,CAW)、电渣焊(Electroslag welding,ESW)、气电焊(Electrogas welding,EGW)、螺柱焊接(Stud welding)等。

使用可燃气焊接金属部件

最常见的气焊工艺是可燃气焊接(Oxy-fuel welding),也称为氧乙炔焰焊接。它是最古老,最通用的焊接工艺之一,但近年来在工业生产中已经不多见。它仍广泛用于制造和维修管道,也适用于制造某些类型的金属艺术品。可燃气焊接不仅可以用于焊接铁或钢,还可用于铜焊、钎焊、加热金属(以便弯曲成型)、气焰切割等。

可燃气焊接所需的设备较简单,也相对便宜,一般通过氧气和乙炔混合燃烧来产生温度约为3100摄氏度的火焰。因为火焰相对电弧更分散,可燃气焊接的焊缝冷却速度较慢,可能会导致更大的应力残留和焊接变形,但这一特性简化了高合金钢的焊接。一种衍生的应用被称为气焰切割,即用气体火焰来切割金属[5] 。其他的气焊工艺有空气乙炔焊、氧氢焊、气压焊,它们的区别主要在于使用不同的燃料气体。氢氧焊有时用于小物品的精密焊接,如珠宝首饰。气焊也可用于焊接塑料,一般采用加热空气来焊接塑料,其工作温度比焊接金属要低得多。

电阻焊

电阻焊(Resistance welding)的原理是:两个或多个金属表面接触时,接触面上会产生接触电阻。如果在这些金属中通过较大的电流(1,000—100,000安培),根据焦耳定律,接触电阻大的部分会发热,将接触点附近的金属熔化形成熔池。一般来说,电阻焊是一种高效、无污染的焊接工艺,但其应用因为设备成本的问题受到限制。

点焊机

点焊(Spot welding),或称电阻点焊,是一种流行的电阻焊工艺,用于连接叠压在一起的金属板,金属板的厚度可达3毫米。两个电极在固定金属板的同时,还向金属板输送强电流。该方法的优点包括:能源利用效率较高,工件变形小,焊接速度快,易于实现自动化焊接,而且无需焊料。由于电阻点焊的焊缝强度明显较低,这一工艺只适合于制造某些产品。它广泛应用于汽车制造业,一辆普通汽车上由工业机器人进行的焊接点多达几千处。一种特殊的点焊工艺(Shot welding),可用于不锈钢点焊。

与点焊类似的一种焊接工艺称为缝焊(Seam welding),它通过电极施加压力和电流来拼接金属板。缝焊所采用的电极是轧辊形而非点形,电极可以滚动来输送金属板,这使得缝焊能够制造较长的焊缝。在过去,这种工艺被用于制造易拉罐,但现在已经很少使用。其他的电阻焊工艺包括闪光焊(Flash welding)、凸焊(projection welding)、对焊(Upset welding)等。

能量束焊接

能源束焊接工艺包括激光焊接(Laser beam welding,LBW)和电子束焊接(Electron beam welding,EBW)。它们都是相对较新的工艺,在高科技制造业中很受欢迎。这两种工艺的原理相近,最显著的区别在于它们的能量来源。激光焊接法采用的是高度集中的激光束,而电子束焊接法则使用在真空室中发射的电子束。由于两种能量束都具有很高的能量密度,能量束焊接的熔深很大,而焊点很小。这两种焊接工艺的工作速度都很快,很容易实现自动化,生产效率极高。主要缺点是设备成本极其昂贵(虽然价格一直在下降),焊缝容易发生热裂。在这个领域的新发展是激光复合焊(Laser-hybrid welding),它结合了激光焊接和电弧焊的优点,因此能够获得质量更高的焊缝。

固态焊接

和最早的焊接工艺锻焊类似的是,一些现代焊接工艺也无需将材料熔化来形成连接。其中最流行的是超声波焊接(Ultrasonic welding),它通过施加高频声波和压力来连接金属和热塑塑料制成的板料和线。超声波焊接的设备和原理都和电阻焊类似,只是输入的不是电流而是高频振动。这一焊接工艺焊接金属时不会将金属加热到熔化,焊缝的形成依赖的是水平振动和压力。焊接塑料的时候,则应该在熔融温度下施加垂直方向的振动。超声波焊接常用于制造铜或铝质地的电气接口,也多见于焊接复合材料。

另一种较常见固态焊接工艺是爆炸焊(Explosion welding),它的原理是使材料在爆炸产生的高温高压作用下形成连接。爆炸产生的冲击使得材料短时间内表现出可塑性,从而形成焊点,这一过程中只产生很少量的热量。这一工艺通常用于连接不同材料的焊接,如在船体或复合板上连接铝制部件。其他固态焊接工艺包括挤压焊(Co-extrusion welding)、冷焊(Cold welding)、扩散焊(Diffusion welding)、摩擦焊(Friction welding)(包括搅拌摩擦焊(Friction stir welding))、高频焊( High frequency welding)、热压焊(Hot pressure welding)、感应焊(Induction welding)、热轧焊 (Roll welding)。

接头型式

常见的焊接接头类型:(1)I形对接接头;(2)V形对接接头;(3)搭接接头;(4)T形接头。

工件之间的焊接连接可以有多种接头形式。五种基本接头类型分别是:对接接头、搭接接头、角接接头、端接接头、T形接头。还有一些由此衍生的接头形式存在,例如双V形对接制备接头,它的特点是把两个待连接的材料都切屑成V型尖角形状。单U型和双U型对接制备接头也很常见,它们的接头被加工成曲线状的U形,和V形接头的直线型不同,搭接接头可以用来连接两件以上的材料,这取决于焊接工艺和材料的厚度,一个搭接接头可以焊接多个工件。

通常情况下,某些焊接工艺不能或几乎完全不能加工某些类型的接头。例如,电阻点焊、激光焊和电子束焊时常常采用搭接接头。然而,一些焊接工艺,如手工电弧焊,几乎可以采用任何接头类型。值得一提的是,有些焊接工艺允许进行多次焊接:在一次焊接的焊缝冷却之后,在其基础上再焊一次。这样就能够以V形对接接头来焊接较厚的工件。

一个焊接接头的横截面,颜色最深的部分是焊接区或称熔化区,较浅的部分是热影响区,颜色最浅的部分是母材

焊接结束之后,焊缝附近的材料显示出几个区别明显的区域。焊缝被称为熔化区,更具体地说就是助焊剂融化后填充的区域,熔化区的材料特性主要取决于所使用的助焊剂,以及助焊剂和母材的兼容性。熔化区周围的是热影响区(HAZ),该区域的材料在焊接过程中产生了微观结构和特性上的变化,这些变化取决于母材在受热状态下的特性。热影响区的金属性能往往不如母材和熔化区,残余应力就分布在这一区域[28]。

[编辑] 焊接质量

衡量焊接质量的主要指标是焊点及其周边材料的强度。影响强度的因素很多,包括焊接工艺、能量的注入形式、母材、填充材料、助焊剂、接头设计形式,以及上述因素间的相互作用。通常采用有损或无损检测来检查焊接质量,检测的主要对象是焊点的缺陷、残余应力和变形的程度、热影响区的性质。焊接检测有一整套规范和标准,来指导操作者采用适当的焊接工艺并判断焊接质量。

[编辑] 热影响区

图中蓝色部分显示了在600°C左右的焊接过程中造成的金属氧化。通过颜色来判断焊接时的温度是很准确的,但是颜色区域不代表热影响区的大小。真正的热影响区实际上是焊缝周围很窄小的区域。

焊接工艺对焊缝附近的金属特性的影响是可以标定的,不同焊接材料和焊接工艺会形成大小不一、特性各异的热影响区。母材的热扩散系数对热影响区的性质有很大的影响:较大的热扩散系数使得材料能以较快速度冷却,形成相对较小的热影响区。与之相反的是,如果材料的热扩散系数较小,散热困难,热影响区相对就较大。焊接工艺的热能输入量对热影响区也有显著的影响,如氧乙炔焊接中,由于热量不是集中输入的,会形成较大的热影响区。而诸如激光焊接这样的工艺,能够把有限的热量集中输出,所造成的热影响区较小。弧焊所造成的热影响区则位于两种极端情况之间,操作者水平往往决定了弧焊热影响区的大小[29][30]。

计算弧焊的热输入量,可以采用以下的公式:

Q = \left(\frac{V \times I \times 60}{S \times 1000} \right) \times \mathit{Efficiency}

式中Q为热输入量(kJ/mm),V为电压(V),I为电流(A),S为焊接速度(mm/min)。Efficiency(效率)的取值取决于所采用的焊接工艺:手工电弧焊为0.75,气体金属电弧焊和埋弧焊为0.9,钨极气体保护电弧焊为0.8[31]。

[编辑] 扭曲和断裂

由于焊接时金属被加热到熔化温度,它们在冷却时会产生收缩。收缩会产生残余应力,并造成纵向和圆周方向的扭曲。扭曲可能导致产品形状的失控。为了消除扭曲,有时焊接时会引入一定的偏移量,以抵消冷却造成的扭曲[32]。限制扭曲的其他方法包括将工件夹紧,但是这样可能导致热影响区残余应力的增大。残余应力会降低母材的机械性能,形成灾难性的冷裂纹。第二次世界大战期间建造的多艘自由轮就出现过这种问题[33][34]。冷裂纹仅见于钢材料,它与钢冷却时形成马氏体有关,断裂多发生在母材的热影响区。为了减少扭曲和残余应力,应该控制焊接的热输入量,单个材料上的焊接应该一次完工,而不是分多次进行。

其他类型的裂纹,如热裂纹和硬化裂纹,在所有金属的焊接熔化区都可能出现。为了减少裂纹的出现,金属焊接时不应施加外力约束,并采用适当的助焊剂[35]。

[编辑] 可焊性

焊接的质量还取决于所采用的母材和填充材料。并非所有的金属都能焊接,不同的母材需要搭配特定的助焊剂。

[编辑] 钢铁

不同钢铁材料的可焊性与其本身的硬化特性成反比,硬化特性指的是钢铁焊接后冷却期间产生马氏体的能力。钢铁的硬化特性取决于它的化学成分,如果一块钢材料含有较高比例的碳和其他合金元素,它的硬化特性指标就较高,因此可焊性相对较低。要比较不同合金钢的可焊性,可以采用以一种名为当量碳含量的方法,它可以反映出不同合金钢相对于普通碳钢的可焊性。例如,铬和钒对可焊性的影响要比铜和镍高,而以上合金元素的影响因子比碳都要小。合金钢的当量碳含量越高,其可焊性就越低。如果为了取得较高的可焊性而采用普通碳钢和低合金钢的话,产品的强度就相对较低——可焊性和产品强度之间存在着微妙的权衡关系。1970年代开发出的高强度低合金钢则克服了强度和可焊性之间的矛盾,这些合金钢在拥有高强度的同时也有很好的可焊性,使得它们成为焊接应用的理想材料[36]。

由于不锈钢含有较高比例的铬,所以对它的可焊性的分析不同于其他钢材。不锈钢中的奥氏体具有较好的可焊性,但是奥氏体因其较高的热膨胀系数而对扭曲十分敏感。一些奥氏体不锈钢合金容易断裂,因此降低了它们的抗腐蚀性能。如果在焊接中不注意控制铁素体的生成,就可能导致热断裂。为了解决这个问题,可以采用一只额外的电极头,用来沉积一种含有少量铁素体的焊缝金属。铁素体不锈钢和马氏体不锈钢的可焊性也不好,在焊接中必须要预热,并用特殊焊接电极来焊接[37]。

[编辑] 铝

铝合金的可焊性随着其所含合金元素的不同变化很大。铝合金对热断裂的敏感度很高,因此在焊接时通常采用高焊接速度、低热输入的方法。预热可以降低焊接区域的温度梯度,从而减少热断裂。但是预热也会降低母材的机械性能,并且不能在母材固定时施加。采用适当的接头形式、兼容性更好的填充合金都能减少热断裂的出现。铝合金在焊接之前应清理表面,除去氧化物、油污和松散的杂质。表面清理是非常重要的,因为铝合金焊接时,过多的氢会造成泡沫化,过多的氧会形成浮渣[38]。

[编辑] 极端环境下的焊接

水下焊接

除了在工厂和修理店这样的可控制环境下工作外,一些焊接工艺还可以在多种环境下进行,如户外、水下、真空(如太空)。在户外作业,如建筑建设和修理工作中,常采用手工电弧焊。需要保护气体的焊接工艺通常不能在户外进行,因为空气的无序流动会导致焊接失败。手工电弧焊还可用于水下焊接,如焊接船体、水下管道、海上作业平台等。水下焊接较常用的工艺还有药芯焊丝电弧焊等。在太空中进行焊接也是可行的:1969年,苏联宇航员第一次在真空环境下试验了手工电弧焊、等离子弧焊和电子束焊接。在那以后的几十年中,太空焊接技术得到了很大的发展。今天,研究者们仍在尝试将不同的焊接技术转移到真空中进行,如激光焊接、电阻焊和摩擦焊等。这些焊接技术在国际空间站的建设中起了很大的作用,透过真空焊接技术,在地面搭建好的空间站子模块得以在太空中组装成型[39]。

[编辑] 保护措施

焊工穿着防护头盔、手套和防护服进行弧焊操作

在缺乏保护的情况下进行焊接作业是十分危险而且有害健康的。通过采用新技术和合适的保护措施,焊接时发生事故和死亡的危险可以大大降低。常用的焊接技术往往采用开放式电弧或火焰,很容易造成烧伤。焊工通过加穿个人防护设备,如橡胶手套、长袖防护夹克等来避免人体暴露在高温和火焰下。除此之外,焊接区域的强烈光照会造成电光性眼炎之类的疾病,因为焊接时产生的大量紫外线会刺激并破坏角膜和视网膜。在进行弧焊时,必须佩带保护眼睛的护目镜或防护头盔。近年来开发的新型防护头盔,可以随着入射紫外线的强度改变护目镜片的透光度。为了保护焊工之外接近焊接现场的人,焊接工作现场往往用半透明的保护幕围起来。这些保护幕通常是聚氯乙烯制成的塑料幕布,能够保护附近的无关人员免受电弧产生的高强度紫外线的照射,但是保护幕不能完全代替护目镜和头盔[40]。

焊工还会受到危险气体和飞溅材料的威胁。诸如药芯焊丝电弧焊和手工电弧焊这样的焊接工艺会产生含有多种氧化物的烟雾,可能会造成金属烟热之类的职业病。焊接烟雾中的小颗粒也会影响工人的健康,颗粒的尺寸越小,危害越大。另外,很多的焊接工艺会产生有害气体和烟气,常见的如二氧化碳、臭氧和重金属氧化物。这些气体对没有经验和有效通风措施的操作人员危害很大。值得注意的还有,很多焊接工艺所采用的保护气体和原材料是易燃易爆的,需要采用适当的防护措施,如控制空气中氧气的含量、将易燃易爆材料分开堆放等[41]。焊接排烟设备常用来抽散有害气体,并通过高效率有隔板空气过滤器来过滤。

[编辑] 经济性和发展趋势

焊接的经济成本是其工业应用的重要影响因素。影响焊接成本的因素很多,如设备、人力、原材料和能量成本等。焊接设备的成本对不同工艺来说变化很大,手工电弧焊和可燃气焊接相对成本低廉,激光焊接和电子束焊接则成本较高。由于某些焊接工艺的成本高昂,一般只用于制造重要的部件。自动焊接设备和焊接机器人的设备成本也很高,因此它们的使用也受到相应的限制。人力成本取决于焊接的速度、每小时工资和总工作时间(包括焊接和后续处理)。原材料成本包括购置母材、焊缝填充材料、保护气体的费用。能量成本则取决于电弧工作时间和焊接的能量需求。

对于手工焊接来说,人力成本往往占总成本的很大一部分。因此,手工焊接成本的降低往往着眼于减少焊接操作的时间,有效的方法包括提高焊接速度、优化焊接参数等。焊接之后的除渣也是一件费时费力的工作。因此,减少焊渣能够提高安全性、环保性,并降低成本,提高焊接质量[42]。机械化和自动化作业也能有效地降低人力成本,但另一方面增加了设备成本,还需要额外的设备安装和调试时间。当产品有特殊需求时,原材料成本往往随之水涨船高。而能量成本通常是不重要的,因为它一般只占总成本的几个百分点[43]。

近年来为了减少高端产品中焊接的人力成本,工业生产中的电阻点焊和弧焊大量采用自动焊接设备(尤其是汽车工业)。焊接机器人能够有效地完成焊接,尤其是点焊。随着技术的进步,焊接机器人也开始用于弧焊。焊接技术的前沿发展领域包括:异型材料之间的焊接(如铁和铝部件的焊接连接)、新型焊接工艺,如搅拌摩擦焊(friction stir welding)、磁力脉冲焊(magnetic pulse welding)、导热缝焊(conductive heat seam welding)和激光复合焊(laser-hybrid welding)等。其他研究则集中于扩展现有焊接工艺的应用范围,如将激光焊接应用于航空和汽车工业。研究者们还希望进一步提高焊接质量,尤其是控制焊缝的微观结构和残余应力,以减少焊缝的变形断裂

关于真空激光焊接技术的研究和激光焊接研究现状的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~