焊接资讯

您现在的位置是:首页 > 焊机信息 > 正文

焊机信息

激光焊接保护气体的作用(保护气对激光焊接的影响)

工品易达2022-10-13焊机信息15

氧气作为保护焊气体用在什么情景?

保护气体

保护气体是指焊接过程中用于保护金属熔滴、熔池及焊缝区的气体,它使高温金属免受外界气体的侵害。

中文名称

保护气体

外文名称

protective gas;shiedling gas

类型

电子用特种气体

作用

焊接过程中用于保护金属熔滴

类别

保护气体可以分为两类:惰性气体和活性气体。惰性气体指的是氦气和氩气,根本不会与熔融焊缝发生反应,用于MIG 焊接(金属 - 惰性气体电弧焊)。活性气体,一般包括二氧化碳,氧气,氮气和氢气。这些气体通过稳定电弧和确保材料平稳地传送到焊缝来参与焊接过程,当占大部分时,会破坏焊缝,但是少量的话反而能提高焊接特点,用于MAG 焊接(金属 - 活性气体电弧焊)。[1]

性能

导热性和传热性是保护气体的重要属性,并且需要密度比空气大,流速比空气低。高电压能提高电离度,从而更容易发生电焊引弧。保护气体可以是一种气体,也可以是两种或三种气体的混合。在激光焊接中,保护气体还能吸收激光能量的重要部分,阻止电焊上层的等离子体的形成。

作用

保护气体在焊接过程中用于保护金属熔滴,对焊接的生产率和质量常常具有重要作用。保护气体防止固化中的熔融焊缝发生氧化,同时也阻挡杂质和空气中的湿气,其可能会通过改变接缝的几何特性而削弱焊缝的耐腐蚀能力、产生气孔并削弱焊缝的耐久性。保护气体也会使焊枪冷却

激光激接时氩气越大越好吗?

不是,合适就好。

激光焊接的保护气体是为了保护和辅助加工。过大或过小的浓度、吹气速度(流量)都有可能导致焊缝氧化更严重,也可能导致焊缝熔池金属被外力干扰严重造成焊缝塌陷或者成型不均匀。

[img]

激光焊造成焊件击穿的原因?

激光焊接:是利用高能量密度的激光束作为热源的一种高效精密焊接方法。激光焊接是激光材料加工技术应用的重要方面之一。激光深熔焊接作为激光焊接的两种基本模式之一(另一为热传导焊接),其应用越来越广泛。

深熔,或称作深度穿透焊接。常见于以高激光功率焊接较厚的材料。在深熔焊接中,激光聚焦在一起从而在工件上形成极高的功率密度。事实上,激光束聚焦的部位会使金属气化,令金属熔池中出现一个盲孔(即深熔孔)。金属蒸气压力会挡住周围熔化的金属,使盲孔在焊接过程中始终处于开口状态。激光功率主要在蒸气与熔体边界和深熔孔壁处被熔体吸收。聚焦的激光束和深熔孔沿焊接轨迹持续移动。焊接材料在深熔孔前方熔化,并在后面重新凝固形成焊缝。

其影响激光深熔焊接效果的因素有:

1、激光功率密度

进行深熔焊接的前提是聚焦激光光斑,使其拥有足够高的功率密度,因此激光功率密度对焊缝成形有决定性的影响。激光功率同时控制着熔透深度与焊接速度。对一定直径的激光束,当增大激光功率时,熔深加深,焊接速度加快。

对达到一定焊接熔深的激光功率一般存在临界值,达到这个临界值时,熔池剧烈沸腾,超过时则熔深会急剧减少。另外,由于金属蒸气的作用力,熔池内会形成小孔,而小孔正是深熔焊接实现的关键。

焦斑功率密度不仅与激光功率成正比,还与激光束和聚焦光路参数有关。

2、焊接速度

在深熔焊接进行过程中,焊接速度与熔深成反比。在保持激光功率不变的情况下,如提高焊接速度,热输入就会下降,熔深也会减小。因此,适当降低焊接速度可加大熔深,但速度太低又会导致材料过度熔化,出现工件焊穿现象。故针对特定激光功率和特定厚度、种类的材料,都有一个获得最大熔深的合适焊接速度范围。

3、焦点位置

深熔焊接时,为保持足够的功率密度,焦点位置至关重要。焦点与工件表面相对位置的变化直接影响焊缝宽度与深度,只有焦点位于工件表面内合适的位置,所得焊缝才能形成平行断面, 并获得最大熔深。

4、保护气体

保护气体的作用有两点:1)排除焊接局部区域的空气,保护工作表面不被氧化;2)抑制高功率激光焊接时产生等离子云。

5、工件接头间隙

工件拼合间隙,装配间隙直接与焊接工件的熔深,焊缝宽度有关。在深熔焊接时,如接头间隙超过光斑尺寸,则无法焊接;接头间隙过小,有时在工艺上会产生接板重叠,熔合困难等不良效果;接头间隙过大,极易焊穿;慢速焊接可弥补一些因间隙过大而带来的焊缝缺陷,而高速焊接焊缝变窄,对装配要求更严格。

6、材料本性

被焊工件材料对激光的吸收决定了激光焊接的效率,影响材料对激光的吸收率的因素有两个方面:

1)材料电阻系数,经过对不同材料抛光表面的吸收率测量发现,材料对激光的吸收率与电阻系数的平方根成正比,而电阻系数又随温度的变化而变化;

2)材料的表面状态对光束吸收率有较重要的影响,因而对焊接效果产生明显作用。

现如今,激光行业的发展是越来越广泛,知道激光焊接的人也越来越多。激光焊接有着传统焊接所无法比拟的优势,当然,在使用时,还是需要根据自己的情况选择焊接方法。如今激光焊接已经逐渐的走进市场,取代传统的焊接方法。

汽车动力电池激光焊接为什么要除尘和吹氮气

氮气是保护气体,是防止焊接过程中因金属高温形成氧化,所以用氮气隔离空气。除尘的目的是防止杂质夹杂在焊接表面,同时也是为了防止电离放弧。

什么是焊接保护气

焊接保护气体的重要作用

从技术角度分析,通过改变保护气体成分,就能对焊接过程产生下列5大重要影响:

(1)提高焊丝熔敷率与传统纯二氧化碳相比,富氩混合气通常带来更高的生产效率。氩气含量应该超过85%以实现射流过渡。当然,提高焊丝熔敷率要求选择合适的焊接参数,焊接效果通常是多参数共同作用的结果,不合适的焊接参数选择通常会降低焊接效率,增加焊后清渣工作。

(2)控制飞溅以及减少焊后清渣氩气的低电离势使电弧稳定性提高,相应的减少了飞溅。最近的焊接电源新技术对CO2焊接的飞溅进行了控制,而在同样条件下,如果使用混合气,能够进一步减少飞溅和扩大焊接参数窗口。

(3)控制焊缝成形,减少过度焊接CO2焊缝倾向于向外突出,导致了过度焊接,使焊接成本增加。氩混气易于控制焊缝成形,避免了焊丝浪费。

(4)提高焊接速度通过使用富氩混合气,即使增加焊接电流,依然能够保持非常好地控制飞溅。这样带来的优势是焊接速度的提高,尤其是对于自动焊接,极大地提高了生产效率。

(5)控制焊接烟尘在同样的焊接操作参数下,富氩混合气相比二氧化碳大大减少了焊接烟尘。相比投资硬件设备来改善焊接操作环境,采用富氩混合气是一个附带的减少源头污染的优势。

分类

焊接保护气体有单元气体,也有二元,三元混合气。单元气体有氩气,二氧化碳,二元混合气有氩和氧,氩和二氧化碳,氩和氦,氩和氢混合气。三元混合气有氦,氩,二氧化碳混合气。应用中视焊材不同选择不同配比的焊接混合气。

常用金属焊接保护气体

(1)Stargold二元氩混气Stargold富氩混合气的特点是焊接电弧稳定,焊接过程平稳,焊后表面光亮,无飞溅,无需焊后打磨。

在一些汽车零部件行业,由于焊缝表面氧化皮的存在,焊后喷漆或电泳均无法附着在氧化皮上。减少气体反应性可以帮助减少这些表面氧化皮的产生。如图1所示。采用stargold5,焊缝表面洁净光亮,无飞溅。

(2)Robostar这是一种适用于自动焊接过程的三元混合气体,熔深能力强,焊接效率高,适合于多种熔滴过渡模式,接头疲劳强度高。尤其适合于汽车行业。当接头焊脚处存在由于焊缝表面外凸引起的焊缝金属向母材表面的不平滑的过渡而造成的多余应力,而引起疲劳强度下降时,Robostar是解决问题的最佳选择。

(3)Stargon与CO2相比,这种三元混合气体可提高焊接速度20%~30%,降低烟尘50%~100%,是一种非常环保的保护气体。适合于各种熔滴过渡形式,焊接过程稳定,焊缝成形好。

激光焊接保护气体的作用的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于保护气对激光焊接的影响、激光焊接保护气体的作用的信息别忘了在本站进行查找喔。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~