焊接资讯

您现在的位置是:首页 > 焊机信息 > 正文

焊机信息

影响激光焊接的工艺参数(影响激光焊接的工艺参数是)

工品易达2022-10-17焊机信息32

激光焊接工艺?

可以。

一、激光焊接工艺参数:

1、功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。

2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。

4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。

二、激光焊接工艺方法:

1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

2、丝与丝的焊接。包括丝与丝对焊、交叉焊、平行搭接焊、T型焊等4种工艺方法。

3、金属丝与块状元件的焊接。采用激光焊接可以成功的实现金属丝与块状元件的连接,块状元件的尺寸可以任意。在焊接中应注意丝状元件的几何尺寸。三、采用激光软钎焊与其它方式相比有以下优点:

1、由于是局部加热,元件不易产生热损伤,热影响区小,因此可在热敏元件附近施行软钎焊。

2、用非接触加热,熔化带宽,不需要任何辅助工具,可在双面印刷电路板上双面元件装备后加工。

3、重复操作稳定性好。焊剂对焊接工具污染小,且激光照射时间和输出功率易于控制,激光钎焊成品率高。

4、激光束易于实现分光,可用半透镜、反射镜、棱镜、扫描镜等光学元件进行时间与空间分割,能实现多点同时对称焊。

5、激光钎焊多用波长1.06um的激光作为热源,可用光纤传输,因此可在常规方式不易焊接的部位进行加工,灵活性好。

6、聚焦性好,易于实现多工位装置的自动化。

盈云光电作为山东激光塑料焊接设备生产厂家,生产的塑料激光焊接设备主要应用于汽车后尾灯、车载摄像头、汽车胎压监测计、医用流体器件。

四、激光深熔焊:

1、冶金过程及工艺理论。 激光深熔焊冶金物理过程与电子束焊极为相似,即能量转换机制是通过“小孔”结构来完成的。这个充满蒸汽的小孔犹如一个黑体,几乎全部吸收入射光线的能量,孔腔内平衡温度达25000度左右。热量从这个高温孔腔外壁传递出来,使包围着这个孔腔的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周即围着固体材料。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属填充着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。

激光焊接技术的工艺参数

连续CO2激光焊的工艺参数  厚度/mm 焊速/(cm/s) 缝宽/mm 深宽比 功率/kw 对接焊缝 321不锈钢(1Cr18Ni9Ti) 0.13 3.81 0.45 全焊透 5 0.25 1.48 0.71 全焊透 5 0.42 0.47 0.76 部分焊透 55 17-7不锈钢(0Cr7Ni7A1) 0.13 4.65 0.45 全焊透 5 302不锈钢(1Cr18Ni9) 0.13 2.12 0.50 全焊透 5 0.20 1.27 0.50 全焊透 5 0.25 0.42 1.00 全焊透 5 6.35 2.14 0.80 7 3.5 8.9 1.27 1.00 3 8 12.7 0.42 1.00 5 20 20.3 21.1 1.00 5 20 6.35 8.47 —— 3.5 16 因康镍合金600 0.10 6.35 0.25 全焊透 5 0.25 1.69 0.45 全焊透 5 镍合金200 0.13 1.48 0.45 全焊透 5 蒙乃尔合金400 0.25 0.60 0.60 全焊透 5 工业纯钛 0.13 5.92 0.38 全焊透 5 0.25 2.12 0.55 全焊透 5 低碳钢 1.19 0.32 —— 0.63 0.65 搭接焊缝 镀锡钢 0.30 0.85 0.76 全焊透 5 302不锈钢(1Cr18Ni9) 0.40 7.45 0.76 部分焊透 5 0.76 1.27 0.60 部分焊透 5 0.25 0.60 0.60 全焊透 5 角缝焊 321不锈钢(1Cr18Ni9Ti) 0.25 0.85 —— —— 5 端接焊缝 321不锈钢(1Cr18Ni9Ti) 0.13 3.60 —— —— 5 0.25 1.06 —— —— 5 0.42 1.90 —— —— 5 17-7不锈钢(0Cr17Ni7A1) 0.13 3.60 —— —— 5 因康镍合金600 0.10 1.06 —— —— 5 0.25 0.60 —— —— 5 0.42 0.76 —— —— 5 镍合金200 0.18 1.06 —— —— 5 蒙乃尔合金400 0.25 激光深熔焊接的主要工艺参数 激光焊接过程常使用惰性气体来保护熔池,当某些材料焊接可不计较表面氧化时则也可不考虑保护,但对大多数应用场合则常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。氦气不易电离(电离能量较高),可让激光顺利通过,光束能量不受阻碍地直达工件表面。这是激光焊接时使用最有效的保护气体,但价格比较贵。氩气比较便宜,密度较大,所以保护效果较好。但它易受高温金属等离子体电离,结果屏蔽了部分光束射向工件,减少了焊接的有效激光功率,也损害焊接速度与熔深。使用氩气保护的焊件表面要比使用氦气保护时来得光滑。氮气作为保护气体最便宜,但对某些类型不锈钢焊接时并不适用,主要是由于冶金学方面问题,如吸收,有时会在搭接区产生气孔。使用保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射。特别在高功率激光焊接时,由于其喷出物变得非常有力,此时保护透镜则更为必要。保护气体的第三个作用是对驱散高功率激光焊接产生的等离子屏蔽很有效。金属蒸气吸收激光束电离成等离子云,金属蒸气周围的保护气体也会因受热而电离。如果等离子体存在过多,激光束在某种程度上被等离子体消耗。等离子体作为第二种能量存在于工作表面,使得熔深变浅、焊接熔池表面变宽。通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。中性原子越轻,碰撞频率越高,复合速率越高;另一方面,只有电离能高的保护气体,才不致因气体本身的电离而增加电子密度。表  常用气体和金属的原子(分子)量和电离能

材料 氦 氩 氮 铝 镁 铁原子(分子)量 4 40 28 27 24 56电离能(eV) 24.46 15.68 14.5 5.96 7.61 7.83从表可知,等离子体云尺寸与采用的保护气体不同而变化,氦气最小,氮气次之,使用氩气时最大。等离子体尺寸越大,熔深则越浅。造成这种差别的原因首先由于气体分子的电离程度不同,另外也由于保护气体不同密度引起金属蒸气扩散差别。氦气电离最小,密度最小,它能很快地驱除从金属熔池产生的上升的金属蒸气。所以用氦作保护气体,可最大程度地抑制等离子体,从而增加熔深,提高焊接速度;由于质轻而能逸出,不易造成气孔。当然,从我们实际焊接的效果看,用氩气保护的效果还不错。等离子云对熔深的影响在低焊接速度区最为明显。当焊接速度提高时,它的影响就会减弱。保护气体是通过喷嘴口以一定的压力射出到达工件表面的,喷嘴的流体力学形状和出口的直径大小十分重要。它必须以足够大以驱使喷出的保护气体覆盖焊接表面,但为了有效保护透镜,阻止金属蒸气污染或金属飞溅损伤透镜,喷口大小也要加以限制。流量也要加以控制,否则保护气的层流变成紊流,大气卷入熔池,最终形成气孔。为了提高保护效果,还可用附加的侧向吹气的方式,即通过一较小直径的喷管将保护气体以一定的角度直接射入深熔焊接的小孔。保护气体不仅抑制了工件表面的等离子体云,而且对孔内的等离子体及小孔的形成施加影响,熔深进一步增大,获得深宽比较为理想的焊缝。但是,此种方法要求精确控制气流量大小、方向,否则容易产生紊流而破坏熔池,导致焊接过程难以稳定。 焊接起始、终止点的激光功率渐升、渐降控制

激光深熔焊接时,不管焊缝深浅,小孔现象始终存在。当焊接过程终止、关闭功率开关时,焊缝尾端将出现凹坑。另外,当激光焊层覆盖原先焊缝时,会出现对激光束过度吸收,导致焊件过热或产生气孔。为了防止上述现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率用电子学方法在一个短时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。

[img]

请问影响激光焊接的几个主要参数是什么?

有以下几点:激光输出功率,激光脉冲波形,激光脉冲宽度,焦点位置,脉冲频率,材料吸收率,焊接速度和保护气体。控制好了这几点,激光焊接才能有效进行。

激光焊接过程中等离子体是如何产生的,对焊接过程有何影响

通常是焊接对热敏感的金属,由于激光能量集中,焊接速度过快,焊接完后没有气体或焊剂保护导致的裂纹缺陷。

可以用激光焊+MIG熔化极氩弧焊,复合焊焊接。利用氩弧焊氩气保护,可以有效减少裂纹缺陷产生,提高焊接质量。

影响激光焊接质量的焊接工艺参数主要包含:激光率、焊接速度、透镜焦距,聚焦位置,保护气体等。激光功率和焊接速度是影响焊接质量的最主要参数,焊接厚度取决于激光功率,约为功率(KW)的0.7次方,通常功率增大,焊接深度增加;速度增加,熔深变浅,焊缝和热影响区变窄,生产率增高。

扩展资料:

(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。

(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。

(3)不需使用电极,没有电极污染或受损的顾虑。且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。

(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。

参考资料来源:百度百科-激光焊

激光焊接中的主要参数包括哪些,分别是如何影响焊缝成形的

激光焊接中的主要参数包括激光功率、焊接速度和焦点位置。激光功率增大时,熔深增大。焊接速度增大时,熔深及熔宽均下降。当焦点位于工件较深部位时,形成V形焊缝;当焦点在工件以上较高距离(正离焦量大)时,形成“钉头”状焊缝,且熔深减小;而当焦点位于工件表面以下1mm左右时,焊缝截面两侧接近平行。

关于影响激光焊接的工艺参数和影响激光焊接的工艺参数是的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~