铝的激光焊接方法(激光铝焊接方法与技巧视频)
激光焊接纯铝哪种铝效果最好
牌号6系以下的铝都比较适合激光焊(准确来说是适合YAG脉冲激光焊接,6系铝可以考虑用半导体器的激光焊接——为连续焊接),1系到3系铝是比较适合用激光焊接的。判断是否适合用激光来焊接,最主要考虑的一方面就是材料对激光的吸收率。铝对激光的吸收率本来就低,所以必须加大激光能量。焊缝金属结晶时在柱状晶边界形成Al—Si或Mg-Si、A1-Mg2Si等低熔点共晶导致产生裂纹。脉冲激光的不连续加热易产生结晶裂纹。连续激光裂纹倾向小一点。综合起来就是铝合金容易产生裂纹,气孔,尤其是6系铝,7系铝。个人经验,通过以下三种方法可以提高激光的吸收率,从而达到良好的焊接效果。
1、焊接结构设计
将工件坡口设计成斜30°角,这样激光束能在空隙中多次反射,形成一个人工小孔,从而增加激光束的吸收率。
2、激光器参数调整
选用短焦距透镜和低阶模输出均可使光斑尺寸减小,激光功率密度增大,铝合金对激光的吸收率也增大。
3、采取适当的表面预处理工艺
阳极氧化和喷砂处理可以显著提高铝对激光束的能量吸收。另外,砂纸打磨、表面化学浸蚀、表面镀、石墨涂层及空气炉中氧化等铝表面预处理措施对激光束的吸收是有效的。
铝合金焊接方法
铝合金的气焊
氧-乙炔气焊的热效率低,焊接热输入不集中,焊接铝及铝合金时需采用熔剂,焊后又需清除残渣,接头质量及性能也不高。因为气焊设备简单,无需电源,操作方便灵活,常用于焊接对质量要求不高的铝合金构件,如厚度较薄的薄板及小零件,以及补焊铝合金构件和铝铸件。
(1)气焊的接头形式
气焊铝合金时,不宜采用搭接接头和T形接头,这种接头难以清理流入缝隙中的残留熔剂和焊渣,应尽可能采用对接接头。为保证焊件焊接时既焊透又不塌陷和烧穿,可以采用带槽的垫板,垫板一般用不锈钢或纯铜等制成,带垫板焊接可获得良好的反面成形,提高焊接生产率。
(2)气焊熔剂的选用
铝合金气焊时,为了使焊接过程顺利进行,保证焊缝质量,气焊时需要加熔剂来去除铝表面的氧化膜及其他杂质。
气焊熔剂(又称气剂)是气焊时的助熔剂,主要作用是去除气焊过程中生成在铝表面的氧化膜,改善母材的润湿性能,促使获得致密的焊缝组织等。气焊铝合金必须采用熔剂,一般是在焊前熔剂直接撒在被焊工件坡口上,或者沾在焊丝上加入熔池内。
铝合金熔剂是钾、钠、钙、锂等元素的氯人盐,是粉碎后过筛并按一定比例配制的粉状化合物。例如铝冰晶石(Na3AlF6)在1000℃进可以熔解氧化铝,又如氯化钾等可使难熔的氧化铝转变为易熔的氯化铝。这种熔剂的熔点低,流动性好,还能改善熔化金属的流动性,使焊缝成形良好。
(3)焊嘴和火焰的选择
铝合金有强烈的氧化性和吸气性。气焊时,为使铝不被氧化,应采用中性焰或微弱碳化焰(乙炔既过剩的碳化焰),使铝熔池置于还原性气氛的保护下而不被氧化。严禁采用氧化焰,因为用氧化性较强的氧化焰会使铝强烈氧化,阻碍焊接过程进行;而乙炔过多,游离的氢可能溶入熔池,会促使缝产生气孔,使焊缝疏松。
(4)定位焊缝
为防止焊件在焊接中产生尺寸和相对位置的变化,焊件焊前需要点固焊。由于铝的线膨胀系数大、导热速度快、气焊加热面积大,因此,定位焊缝较钢件应密一些。
定位焊用的填充焊丝与产品焊接时相同,定位焊接前应在焊缝间隙内涂一层气剂。定位焊的火焰功率比气焊时稍大。
(5)气焊操作
焊接钢铁材料时,可以从钢材的颜色变化判断加热的温度。但焊铝时,却没有这个方便条件。因为铝合金从室温加热到熔化的过程中没有颜色的明显变化,给操作者带来控制焊接温度困难。但可根据以下现象掌握施焊时机:
1)当被加热的工件表面由光亮白色变成暗淡的银白色,表面氧化膜起皱,加热处金属有波动现象时,表明即将达到熔化温度,可以施焊;
2)用蘸有熔剂的焊丝端头及被加热处,焊丝与母材能熔合时,即达到熔化温度,可以施焊;
3)母材边棱有倒下现象时,母材达到熔化温度,可以施焊。
气焊薄板可采用左焊法,焊丝位于焊接火焰之前,这种焊法因火焰指向未焊的冷金属,热量散失一部分,有利于防止熔池过热、热影响区金属晶粒长大和烧穿。母材厚度大于5㎜可采用右焊法,此法焊丝在焊炬后面,火焰指向焊缝,热量损失小,熔深大,加热效率高。
气焊厚度小于3㎜的薄件时,焊炬倾角为20~40°;气焊厚件时,焊炬倾角为40~80°,焊丝与焊炬夹角为80~100°。铝合金气焊应尽量将接头一次焊成,不堆敷第二层,因为堆敷第二层时会造成焊缝夹渣等。
激光焊接机能焊接铝板吗
激光焊接机可以焊接铝板的。
铝板激光焊接机设备特点:
1、设备采用国际主流激光器,性能稳定,使用寿命长达100000个小时,基本免维护。
2、焊接头可选,常规焊接头焊缝0.3-0.4mm,光斑直径0.5mm。焊缝更美观,缺陷率大大降低,焊缝宽度可以电脑调整。
3、激光安全互锁功能,离开材料表面后,扣动扳机不会出激光。
4、9寸彩屏显示,参数条件更加直观便利。
5、对比传统的焊接方式,可以焊接到传统焊接方式焊接不到的位置,因为激光焊接属于无接触焊接,不管是在拼焊,点焊,都拥有很大的优势所在。
武汉双成铝板激光焊接机厂家设备广泛应用于手机通讯、电子元件、眼镜钟表、首饰饰品、五金制品、精密器械、医疗器械、汽车配件、工艺礼品等行业。
铝合金焊接有哪几种方法
(一)、铝合金的搅拌摩擦焊接
搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺。搅拌摩擦焊接工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性状态,并在搅 拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、复合材料焊接等。目前搅拌摩擦焊在铝合金的焊接方面研究应用较多。已经成功地进行了搅拌摩擦焊接的铝合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。国外已经。进入工业化生产阶段,在挪威已经应用此技术焊接快艇上长为20 m 的结构件,美国洛克希德·马丁航空航天公司用该项技术焊接了铝合金储存液氧的低温容器火箭结构件。
铝合金搅拌摩擦焊焊缝是经过塑性变形和动态再结晶而形成,焊缝区晶粒细化,无熔焊的树枝晶,组织细密,热影响区较熔化焊时窄,无合金元素烧损、裂纹和气孔等缺陷,综合性能良好。与传统熔焊方法相比,它无飞溅、烟尘,不需要添加焊丝和保护气体,接头性能良好。由于是固相焊接工艺,加热温度低,焊接热影响区显微组织变化小,如亚稳定相基本保持不变,这对于热处理强化铝合金及沉淀强化铝合金非常有利。焊后的残余应力和变形非常小,对于薄板铝合金焊后基本不变形。与普通摩擦焊相比,它可不受轴类零件的限制,可焊接直焊缝、角焊缝。传统焊接工艺焊接铝合金要求对表面进行去除氧化膜,并在48 h 内进行加工,而搅拌摩擦焊工艺只要在焊前去除油污即可,并对装配要求不高。并且搅拌摩擦焊比熔化焊节省能源、污染小。
搅拌摩擦焊铝合金也存在一定的缺点: ①铝合金搅拌摩擦焊接时速度低于熔化焊; ②焊件夹持要求高,焊接过程中对焊件要求加一定的压力,反面要求有垫板;③焊后端头形成一个搅拌头残留的孔洞,一般需要补焊上或机械切除; ④搅拌头适应性差,不同厚度铝合金板材要求不同结构的搅拌头,且搅拌头磨损快; ⑤工艺还不成熟,目前限于结构简单的构件,如平直的结构、圆形结构。搅拌摩擦焊工艺参数简单,主要有搅拌头的旋转速度、搅拌头的移动速度、对焊件的压力及搅拌头的尺寸等。
(二)、 铝合金的激光焊接
铝及铝合金激光焊接技术(Laser Welding) 是近十几年来发展起来的一项新技术,与传统焊接工艺相比,它具有功能强、可靠性高、无需真空条件及效率高等特点。其功率密度大、热输入总量低、同等热输入量熔深大、热影响区小、焊接变形小、速度高、易于工业自动化等优点,特别对热处理铝合金有较大的应用优势。可提高加工速度并极大地降低热输入,从而可提高生产效率,改善焊接质量。在焊接高强度大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,则可以得到实现。
激光焊接铝合金有以下优点: ①能量密度高,热输入低,热变形量小,熔化区和热影响区窄而熔深大; ②冷却速度高而得到微细焊缝组织,接头性能良好; ③与接触焊相比,激光焊不用电极,所以减少了工时和成本; ④不需要电子束焊时的真空气氛,且保护气和压力可选择,被焊工件的形状不受电磁影响,不产生X 射线; ⑤可对密闭透明物体内部金属材料进行焊接; ⑥激光可用光导纤维进行远距离的传输,从而使工艺适应性好,配合计算机和机械手,可实现焊接过程的自动化与精密控制。
现在应用的激光器主要是CO2 和YAG 激光器,CO2 激光器功率大,对于要求大功率的厚板焊接比较适合。但铝合金表面对CO2 激光束的吸收率比较小,在焊接过程中造成大量的能量损失。YAG激光一般功率比较小,铝合金表面对YAG激光束的吸收率相对CO2激光较大,可用光导纤维传导,适应性强,工艺安排简单等。
在焊接大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,则可以得到实现。
铝及铝合金的激光焊接难点在于铝及铝合金对辐射能的吸收很弱对CO2 激光束(波长为10. 6μm) 表面初始吸收率1. 7 %;对YAG激光束(波长为1. 06 μm)吸收率接近5 %。比较复杂高频引弧时引起电极烧损和电弧摆动,起弧后稳定性不强,同时在电弧的高温状态下,电极迅速烧损。但激光与等离子弧复合可明显提高熔深和焊接速度 。
铝合金激光- 电弧复合焊工艺中可控参数较多,主要有以下几方面。①激光功率和电弧电流电压等:复合焊接对激光功率要求降低,同时功率因素对工艺影响很大,激光功率越大,熔深越大,而且这种影响力远大于激光单独焊接时对熔深的影响,增加电弧电源功率,熔化区宽度增加,热影响区增大,若采用脉冲YAG激光器,可调节脉冲频率和宽度以能提高工艺稳定性,减少气孔的形成; ②焊接速度参数:随焊接速度的增加,焊接热输入降低,焊缝熔深降低,而且不同的焊接速度影响匙孔的作用有所不同,从而影响焊接的稳定性; ③激光与电弧中心的距离:在一定范围内,激光与电弧中心距DLA11越小则熔深越大,此时增加电弧电流不仅增加熔宽,而且增加熔深; ④激光与电弧配合方式:国际上对复合焊的研究一般采用激光垂直入射,电弧与激光束成一定角度,沿焊接方向激光或在电弧前或在电弧后,不同的设计安排影响复合焊接的工艺稳定性和焊接气孔、裂纹的形成; ⑤填充材料的影响:通过填充焊丝、粉末来补充合金元素的烧损,增加焊缝强度,改善工艺性能,防止热裂纹; ⑥保护气体成分及流速:复合焊中保护气体一般为Ar 、He 或Ar/ He 混合气体,Ar 的电离能低,易于形成等离子体,与激光束光子形成耦合作用,不利于保护,所以纯He 气比纯Ar 气保护效果好,但从经济角度来看Ar气更经济一些,国外有用Ar75%+He25%混合气保护进行激光焊接,效果良好,且可改善工艺性能。其它还有一些因素影响,如焊前铝合金表面的清洁,氧化膜的去除,焊后热处理等。当焊接高强度厚板铝合金时,可采用多道焊工艺达到完全熔透焊接,但厚板铝合金焊接易产生气孔、热裂纹及焊缝软化等问题,且其过程比较复杂。厚板铝合金焊接变形严重,所以必须采用一些防变形的工艺。
(三)、 铝合金的电子束焊接
电子束焊是指在真空环境下,利用会聚的高速电子流轰击工件接缝处产生的热能,使被焊金属熔合的一种焊接方法。电子束作为焊接热源的突出特点是功率密度高、穿透能力强、精确、快速、可控、保护效果好。对于铝合金电子束焊接,由于能量密度高可大大减小热影响区,提高焊接接头强度,避免热裂纹等缺陷的产生。由于能量密度高,穿透能力强可对难以焊接的铝合金厚板进行焊接。
同传统电弧焊接铝合金相比,电子束焊能量密度高3~4 个数量级,与另外一种高能量密度焊接工艺——激光焊接相当。因此焊接接头的热影响区非常小,接头强度较传统焊接方法提高很多。电子束的穿透性能好,可对大厚度的铝合金进行施焊,焊后接头力学性能良好。铝合金焊缝金属的抗裂性能随着焊接能量密度的增加和热输入的减少而增加。所以铝合金电子束焊接接头的抗裂性能要比采用传统焊接方法的焊接接头高很多,一般要比氩弧焊焊缝高出1~1. 5 倍。铝合金电子束焊焊后残余应力小,变形小,对薄板焊后几乎可做到不变形。电子束焊要求在真空条件下完成,真空是最好的保护手段,在这种条件下可以得到纯净的焊缝金属,避免了空气或保护气体的污染。电子束焊接铝合金在真空重熔时,焊缝中杂质含量微乎其微,焊缝气体含量降低接近一半,从而焊缝塑性、韧性大大提高。电子束可控性好,可以方便地进行扫描、偏转、等,易于焊接过程的自动化,并且通过电子束扫描熔池可以消除缺陷,提高接头质量 。
电子束焊接获得优良的焊缝的最有效方法是焊接过程中同时对刚刚焊过的焊缝进行扫描。回扫间距决定晶粒细化的可控程度,凝固组织可由粗大的柱状晶转化为细小等轴晶。对AlMg0. 4Si1. 2 合金进行扫描焊接与无扫描焊接相比,晶体主轴长度减少到无扫描焊接时的1/ 5 ;焊缝硬度提高80% ,接近母材水平。铝合金焊缝金属晶粒细化程度对接头性能有重要影响。采用具有回扫运动的电子束扫描焊接,可减少合金元素的损失,细化焊缝组织,使之变为细小的等轴晶,并提高硬度。对于已经成核生长的晶体,如果电子束扫描间距过小在电子束扫描时产生重熔,但导致电子束回扫细化晶粒的作用减弱 。
铝合金电子束焊时对电子束流非常敏感,尤其是对于大厚度铝合金板焊接时,电子束流小时不能焊透,大时产生下塌,出现凹坑。铝合金电子束焊接的另外一个难点是焊接气孔。铝合金表面的氧化膜主要成分是Al2O3 和MgO ,容易吸收大量的水分是铝合金焊缝中气孔的主要来源。铝合金表面氧化膜比重接近基体,容易进入焊缝产生夹杂、气孔。尤其是防锈铝合金电子束焊,气孔问题较为严重。传统TIG 焊铝合金时通常采用大的热输入量并在较低的焊接速度下进行焊接,促使氢从熔池中逸出,而电子束焊接铝合金时速度快,热输入量小,氢来不及从熔池中逸出,容易形成气孔。通常电子束焊铝合金采用表面下聚焦和较窄的焊缝以及扫描重熔的方法来防止气孔的产生。另外,电子束焊接要求在真空条件下进行,所以对铝合金大型结构件施焊困难。电子束易受周围环境电磁场的影响,设备比较复杂,费用比较昂贵,所以还没有达到大规模工业化生产。
近年来发展的局部真空电子束焊接工艺很好地解决了铝合金电子束焊接大型构件的问题。Drauge2lates 等人成功地对AlMg5Mn 和AlMg0. 4Si1. 2 合金进行了局部真空高速电子束焊接结果表明在60 m/min的高速下焊接可生产出无焊接缺陷的焊缝可见局部真空电子束焊接铝合金具有相当好的发展前景是焊接铝合金的一种先进工艺。
怎样焊接铸造铝合金
铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。
铝合金的激光焊接铝及铝合金激光焊接技术(Laser
Welding)
是近十几年来发展起来的一项新技术,与传统焊接工艺相比,它具有功能强、可靠性高、无需真空条件及效率高等特点。其功率密度大、热输入总量低、同等热输入量熔深大、热影响区小、焊接变形小、速度高、易于工业自动化等优点,特别对热处理铝合金有较大的应用优势。可提高加工速度并极大地降低热输入,从而可提高生产效率,改善焊接质量。在焊接高强度大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,则可以得到实现。
动力电池铝壳的激光焊接工艺是怎样的
一般壳体厚度都要求达到1.0毫米以下,主流厂家目前根据电池容量不同壳体材料厚度以0.6mm和0.8mm两种为主。焊接方式主要分为侧焊和顶焊,其中侧焊的主要好处是对电芯内部的影响较小,飞溅物不会轻易进入壳盖内侧。由于焊接后可能会导致凸起,这对后续工艺的装配会有些微影响,因此侧焊工艺对激光器 的稳定性、材料的洁净度和顶盖与壳体的配合间隙有较高的要求。而顶焊工艺由于焊接在一个面上,可采用更高效的振镜扫描焊接方式
关于铝的激光焊接方法和激光铝焊接方法与技巧视频的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~