焊接资讯

您现在的位置是:首页 > 电池 > 正文

电池

质子交换膜燃料电池PEMFC工作原理(质子交换膜燃料电池PEMFC)

工品易达2022-10-27电池15

质子交换膜燃料电池工作原理 

(亚南集团氢燃料电池,亚小南为您解答4000-080-999)

质子交换膜燃料电池(proton exchange membrane fuel cell)是一种燃料电池,在原理上相当于水电解的“逆”装置。其单电池由阳极、阴极和质子交换膜组成,阳极为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜作为传递H+的介质,只允许H+通过。工作时相当于一直流电源,阳极即电源负极,阴极即电源正极。

PEMFC冷却系统的结构、原理图、实物图

以氢为原料的质子交换膜燃科电池(Proton Exchange Membrane Fuel Cell,PEMFC)采用可传导离子的聚合膜作为电解质,所以也叫聚合物电解质燃料电池(PEFC)、固体聚合物燃料电池(SPFC)或固体聚合物电解质燃料电池(SPEFC)。与其它种类的燃料电池相比,它具有输出比功率高、操作温度低、腐蚀性低和寿命长等优点。

PEMFC核心部件是质子交换膜,在电池中充当固态电解质、阳极室与阴极室的隔膜及电子绝缘体,传递反应离子及水。目前,在PEMFC中广泛采用的质子交换膜是全氟磺酸膜(以美国Dupont公司的Nafion膜为典型代表),该膜具有较好的热稳定性、出色的抗电化学氧化性、良好的机械性能和较高的电导率。然而,由于其甲醇渗透率较高、在高温或湿度较低时电导率明显下降、制备工艺复杂、价格昂贵,使其应用受到限制,不能满足未来高效率、高能量密度电池的要求。为了克服这些缺点,人们开始研究开发新型质子交换膜,如磺化聚酰亚胺膜、磺化聚砜膜、磺化聚苯硫醚膜、磺化聚醚醚酮膜、磺化聚苯并咪唑膜和磺化聚磷腈膜等[3]。现从文献角度对其中几种新型质子交换膜的制备方法进行引述。

韩国学校法人汉阳学院在2002年8月21日申请的CN1545531中提及:一个装有聚四氟乙烯搅拌系统、惰性气体入口、样品入口的250ml反应器被用来实施聚酰亚胺缩合反应,将其放入油温浴以不断维持反应温度。向反应器装入4mmol 3,5-二氨基苯甲酸并加入N-甲基吡咯烷酮以作为溶剂。完全溶解之后,向溶液中慢慢加入10mmol的3,3,4,4-二苯酮四羧酸二酐粉末。反应持续大约一小时之后,再加入6mmol氧化二苯胺。反应持续三小时后,得到深棕色粘稠溶液。向该溶液中加入2mmol N,N-二(2-羟乙基)-2-氨基乙磺酸粉末在N-甲基吡咯烷酮中的溶液并在60~90℃保持1小时。将溶液浇注在玻璃板上,在烘箱中依次在110℃下老化2小时,在150℃下老化1小时,在200℃下老化1小时,在250℃下老化1小时。在真空箱中60℃下干燥24小时,得到透明的离子交换能力为1.19meq/g的磺化聚酰亚胺膜。专利优先权2001.8.22 KR 2001/50816;2002.7.5 KR 2002/38903[4]。

韩国三星SDI株式会社2003年7月6日申请的CN1490345涉及一种制备质子导电聚合物的方法,步骤如下:(1)反应四羧酸二酸酐单体和二胺单体以提供聚酰亚胺;(2)在三烷基膦和偶氮化物的存在下反应聚酰亚胺和芳族羟基化合物,和在有机溶剂中溶解反应产物;(3)向步骤(2)的溶液放入酸基团给体。专利优先权2002.7.6 KR 39154/2002[5]。

中国科学院大连化学物理研究所燃料电池工程中心邢丹敏等人的方法:将磺化聚砜(IEC=1.03mmol/g)制成ω(SPSF)/ω(溶剂)=2:8的溶液,于玻璃板上流涎法成膜,通过加热玻璃板使溶剂蒸发;将膜置于真空烘箱中120℃下干燥12h,制得的膜厚度可控制在50~150μm。将制得的膜于0.5mol/L的H2SO4溶液中80℃下煮1h,使之完全酸化,再用去离子水煮2~3次,除去多余的酸,完成。制备SPSF不宜用氯磺酸直接磺化,而是用氯磺酸三甲基硅烷[(CH3)3SiSO3Cl]磺化[6]。

上海交通大学2002年11月21日申请的CN1195003提供了磺化聚苯硫醚酮及其制备方法,该聚合物以二巯基单体与磺化二卤(二硝基)二苯酮单体和二卤(二硝基)二苯酮单体为原料,以碱金属的碱或碱金属盐为催化剂,在极性溶剂的反应介质中,高温共聚而制备[7]。

天津大学化工学院化学工程研究所化学工程联合国家重点实验室李磊等人的方法:称取一定量PEEK粉末溶于浓硫酸中(磺化),室温搅拌,反应一定时间后,将溶液倒入大量冰水混合物中,搅拌1h后,静置过夜,再用去离子水多次洗涤,直到溶液的pH接近7时过滤出沉降的聚合物,60℃下干燥24h后得到磺化产物SPEEK。将一定量SPEEK溶于N,N-二甲基甲酰胺(DMF)中,搅拌均匀,制成10wt%制膜液。取制膜液在洁净的玻璃板上流延成膜,60℃下干燥6h后,再在100℃下热处理4h,自然冷却至室温后,浸入去离子水中,揭下。然后将膜在室温下、1mol/L H2SO4水溶液中浸泡24h后取出,再用去离子水多次洗涤以除去膜中残留的H2SO4,完成[8]。

PEMFC发电机详细工作原理

氢燃料电池工作原理

燃料电池本质是水电解的“逆”装置,主要由3 部分组成,即阳极、阴极、电解质,如图 1[3]。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,用来加速电极上发生的电化学反应。两极之间是电解质。

以质子交换膜燃料电池(PEMFC)为例,其工作原理如下:

(1) 氢气通过管道或导气板到达阳极;

(2) 在阳极催化剂的作用下,1 个氢分子解离为 2 个氢质子,并释放出 2 个电子,阳极反应为:

H2→2H++2e。

(3) 在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,在阴极催化剂的作用下,氧分子和氢离子与通过外电路到达阴极的电子发生反应生成水,阴极反应为:1/2O2+2H++2e→H2O

总的化学反应为:H2+1/2O2=H2O

电子在外电路形成直流电。因此,只要源源不断地向燃料电池阳极和阴极供给氢气和氧气,就可以向外电路的负载连续地输出电能。

PEMFC 的特点及研发应用现状

燃料电池种类较多,PEMFC 以其工作温度低、启动快、能量密度高、寿命长等优点特别适宜作为便携式电源、机动车电源和中、小型发电系统。

PEMFC 发电机由本体及其附属系统构成。本体结构除上述核心单元外,还包括单体电池层叠时为防止汽、水泄漏而设置的密封件,以及压紧各单体电池所需的紧固件等。附属系统包括:燃料及氧化剂贮存及其循环单元,电池湿度、温度调节单元,功率变换单元及系统控制单元。

(1) PEMFC 作为移动式电源的应用

PEMFC 作为移动式电源的应用领域分为两大类:一是可用作便携式电源、小型移动电源、车载电源等。适用于军事、通讯、计算机等领域,以满足应急供电和高可靠性、高稳定性供电的需要。实际应用是手机电池、笔记本电脑等便携电子设备、军用背负式通讯电源、卫星通讯车载电源等。二是用作自行车、摩托车、汽车等交通工具的动力电源,以满足环保对车辆排放的要求。从目前发展情况看,PEMFC 是技术最成熟的电动车动力电源。

国际上,PEMFC 研究开发领域的权威机构是加拿大 Ballard 能源系统公司。美国 H-Power 公司于 1996 年研制出世界上第一辆以 PEMFC 发电机为动力源的大巴士[5]。近年来,我国对燃料电池电动车的研发也极为重视,被列入国家重点科技攻关计划。上海神力公司、富原燃料电池有限公司、清华大学、中科院大连化物所已分别研制出游览观光车、中巴车样车,其性能接近或达到国际先进水平。

(2) PEMFC 作为固定式电源的应用

PEMFC 除适用于作为交通电源外,也非常适合用于固定式电源。既可与电网系统互联,用于调峰;也可作为独立电源,用作海岛、山区、边远地区、或作为国防(人防)发供电系统电源。

采用多台 PEMFC 发电机联网还可构成分散式供电系统。分散式供电系统有很多优点:① 可省去电网线路及配电调度控制系统;② 有利于热电联供(由于 PEMFC 电站无噪声,可就近安装,PEMFC 发电所产生的热可进入供热系统),可使燃料总利用率高达 80%以上;③ 受战争和自然灾害等影响比较小,尤其适宜于现代战争条件下的主动防护需要;④ 通过天燃气、煤气重整制氢,可利用 现 有 天 燃 气 、 煤 气 供气 系 统 等 基 础 设 施 为PEMFC 提供燃料;通过再生能源制氢(电解水制氢、太阳能电解制氢、生物制氢)则可形成循环利用系统(这种循环系统特别适用于边远地区、人所),使系统建设成本和运行成本降低。国际上普遍认为,随着燃料电池的推广应用,发展分散型电站将是一个趋势。

(3) 氢能电源的军事应用前景

随着现代科学技术的迅速发展及其在军事领域的广泛应用,以数字化技术为核心的新兴信息技术将渗透到战场的各个领域,从侦察、监视到预警,从通信、指挥到控制,从武器装备的自动化、精确制导和智能化到各种电子战手段,信息技术装备已经成为覆盖整个战场的、决定战争胜负的重要因素,它不仅构成总体作战的“神经系统”,而且成为总体作战能力的“倍增器”。电源作为信息技术装备的命脉,能否连续、可靠、安全、灵活地供电是至关重要的,它是信息技术装备密不可分的一部分。

由于 PEMFC 发电机工作温度低,红外辐射少,无震动,没有噪音,因此特别适合用作为现代军用电源。1998 年 8 月,美国国防部在向国会国防委员会呈递的报告中指出:移动电力是永久性防御设施最基本的五大要素之一;燃料电池发电技术替代常规发电装置的迅速演变,给未来发电系统采用氢气作为主燃料开辟了道路;由于能量转换效率(超过60%)很高,操作维护极为简单,燃料电池发电机使氢能源作为主燃料的应用极为可靠而高效。因此,把作战燃料改为氢,将获得更加高效可靠的发电系统、更低的排放、更低的噪音、极大地减小热辐射和红外成像,便于伪装和隐蔽作战。

PEMFC 发电机的诸多优越性能,使其在航空航天及超级移动设备、水下潜艇、军事工程、通讯工程、车辆动力电源、单兵和部(分)队便携电源、边远地区、海防哨所以及人防工程中都具有极好的应用前景。早在 1960 年代,美国航空航天局(NASA)就与通用电气公司(GE)联合开发 PEMFC发电机,并多次用于双子星座卫星计划的飞行,特别是 1968 年采用 Nafion 膜后在发射的生物卫星上使用PEMFC 发电机,其寿命在实验室已达57000h。后来,NASA 又与Hamilton 标准公司合作研制 RFC(再生燃料电池)系统,目的是配合太阳能发电系统组成用于火星探测飞行器或月球基地的动力电源(太阳能电解水装置功率 35kW,PEMFC发电机功率 25kW)。美国空军也与Treadwell 公司签订协议研究用于卫星的 RFC 系统(PEMFC 功率12kW,电压 28V)。

在超级移动装备(EMU)应用方面,NASA 与EPSI 公司合作开发采用金属氢化物储氢的 200Wh和 1500Wh 能量的 PEMFC 系统,以替代现有装备中采用的可充电电池,可有效提高能量储存密度和一次性充能能量以及循环寿命、充能速度。

PEMFC 在军事领域的一个重大用途是作为海军舰艇的动力电源。PEMFC 发电机作为潜艇不依赖于空气的推进动力(AIP)源与斯特林发动机和闭式循环柴油机相比,具有效率高、噪音低和红外辐射小等优点,在携带相同重量或体积的燃料气时,潜艇续航能力最强(大约为斯特林发动机的 2倍),且没有污染,因此 PEMFC 是潜艇 AIP 系统的最佳选择。德国从 1980 年(也是世界上最早)开始研究基于 PEMFC 发电机的潜艇,目前德国已能生产 212、214 型号的基于PEMFC 发电机的潜艇。而美国海军与 AP 公司合作开始研制以柴油重整制氢为氢源的 PEMFC 发电机,还与 Treadwell 公司合作设计并制造了用于水下探测器的 PEMFC 电源。

PEMFC 的诸多优点,使其在重要的民用设施如智能大厦、医院、宾馆等以及国防(人防)领域都具有极好的应用前景。目前这些地方的供电系统均采用以外电为主、柴油发电机组为辅的供电方式。当外电毁坏启用柴油发电机组时,由于柴油发电机组存在烟气排放,隐蔽性差、震动大、噪音高、环保性能差等许多缺点,更不适合在未来高科技战争中使用。因此,研究基于 PEMFC 的发电系统可有效利用氢能实现环保,对民用供电和国防建设都有极为重大的意义。

质子交换膜燃料电池PEMFC工作原理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于质子交换膜燃料电池PEMFC、质子交换膜燃料电池PEMFC工作原理的信息别忘了在本站进行查找喔。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~