焊接资讯

您现在的位置是:首页 > 光伏 > 正文

光伏

光伏组件iv曲线峰值功率测试仪(光伏组件iv测试功率校准)

工品易达2022-10-17光伏17

iv测试仪数据库怎么刷功率

1、首先开启启动iv测试仪数据库。

2、其次通过砖利程序,该设备可以直接在光伏系统的安装位置测量和计算峰值功率ppk、r和rp。

3、最后显示器的结果就是测量物品的真实功率表。

光伏组件出问题了 别慌这有几种问题检测方法

光伏组件常见的问题有:热斑、隐裂和功率衰减。

由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。

热斑形成原因及检测方法

光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。

光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。

热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。

热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。

隐裂形成原因及检测方法

隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。 隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。

光伏组件在出厂前会进行 EL 成像检测,所使用的仪器为 EL 检测仪。

该仪器利用晶体硅的电致发光原理,利用高分辨率的 CCD 相机拍摄组件的近红外图像,获取并判定组件的缺陷。

EL 检测仪能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。

功率衰减分类及检测方法

光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。光伏组件的功率衰减现象大致可分为三类:

第一类,由于破坏性因素导致的组件功率衰减;

第二类,组件初始的光致衰减;

第三类,组件的老化衰减。

其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。

第二类、第三类是光伏组件生产过程中亟需解决的工艺问题。光伏组件功率衰减测试可通过光伏组件 I-V 特性曲线测试仪完成。

光伏IV曲线图是怎么回事?

1、光伏IV测试图是用上图的IV曲线测试仪测出的,目的是通过IV曲线的形态来判断目前待测组件的质量情况,通常有问题的组件它的曲线是不平滑的,不同的形态代表不同的故障,详细分析可以参考百度文库里的我的文章《光伏电站IV曲线测试的意义》

2、通常通过测IV特性,可以得到如下信息:

组串开路电压(Voc)和短路电流(Isc)以及极性

最大功率点电压(Vmpp)、电流(Impp)和峰值功率(Pmax)

光伏组件/组串填充系数FF

识别光伏组件/阵列缺陷或遮光等问题

积尘损失、温升损失,功率衰减、串并联适配损失计算等

[img]

光伏电站的组件检测需要使用什么设备?

1、主要包括IV曲线测试仪(如图),EL测试仪,功率分析仪,电能质量分析仪,接地电阻测试仪,钳表等

2、环境测试包括风速,温湿度,辐照度测试仪等。

iv扫描是什么意思

一种技术。iv扫描技术是指逆变器或者iv扫描设备通过扫描光伏组件的工作电压,采样得到光伏组件工作电流,再根据iv测试仪等得到的光照温度等数据,来判断光伏电站的光伏组件是否存在遮挡、损坏、热斑等异常情况,还可分析光伏组件的衰减等情况。

如何测试太阳能电池的iv特性曲线

太阳能光伏电池实验讲义

一、实验目的

1、了解pn结基本结构与工作原理;

2、了解太阳能电池的基本结构,理解工作原理;

3、掌握pn结的伏安特性及伏安特性对温度的依赖关系;

4、掌握太阳能电池基本特性参数测试原理与方法,了解光源波长、温度等因素对太阳能电池

特性的影响;

5、通过分析pn结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分析实验数据与理论结果间存在差异的原因。

二、实验原理

1、光生伏特效应

半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。

常见的太阳能电池从结构上说是一种浅结深、大面积的pn结。太阳能电池之所以能够完成光电转换过程,核心物理效应是光生伏特效应。这种效应是半导体材料的一种通性。如图1所示,当特定频率的光辐照到一块非均匀半导体上时,由于内建电场的作用,载流子重新分布导致半导体材料内部产生电动势。如果构成回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。

非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。n型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的,不同的制备方法导致不同的杂质分布特征。

图1 pn结结构示意图

1/21页

根据半导体基本理论,处于热平衡态的pn结结构由p区、n区和两者交界区域构成。为了维持统一的费米能级,p区内空穴向n区扩散,n区内空穴向p区扩散。载流子的定向运动导致原来的电中性条件被破坏,p区积累了带有负电的不可动电离受主,n区积累了不可能电离施主。载流子扩散运动的结果导致p区带负电,n区带正电,在界面附近区域形成由n区指向p区的内建电场和相应的空间电荷区。显然,两者费米能级的不统一是导致电子空穴扩散的原因,电子空穴扩散又导致出现空间电荷区和内建电场。而内建电场的强度取决于空间电荷区的电场强度,内建电场具有阻止扩散运动进一步发生的作用。当两者具有统一费米能级后扩散运动和内建电场的作用相等,p区和n区两端产生一个高度为qVD的势垒。理想pn结模型下,处于热平衡的pn结空间电荷区没有载流子,也没有载流子的产生与复合作用。

当有入射光垂直入射到pn结,只要pn结结深比较浅,入射光子会透过pn结区域甚至能深入半导体内部。如图2所示,如果入射光子能量满足关系hEg(Eg为半导体材料的禁带宽度),那么这些光子会被材料本征吸收,在pn结中产生电子空穴对。光照条件下材料体内产生电子空穴对是典型的非平衡载流子光注入作用。光生载流子对p区空穴和n区电子这样的多数载流子的浓度影响是很小的,可以忽略不计。但是对少数载流子将产生显著影响,如p区电子和n区空穴。在均匀半导体中光照射下也会产生电子空穴对,它们很快又会通过各种复合机制复合。在pn结中情况有所不同,主要原因是存在内建电场。内建电场的驱动下p区光生少子电子向n区运动,n区光生少子空穴向p区运动。这种作用有两方面的体现,第一是光生少子在内建电场驱动下定向运动产生电流,这就是光生电流,它由电子电流和空穴电流组成,方向都是由n区指向p区,与内建电场方向一致;第二,光生少子的定向运动与扩散运动方向相反,减弱了扩散运动的强度,pn结势垒高度降低,甚至会完全消失。宏观的效果是在pn结两端产生电动势,也就是光生电动势。

图2 光辐照下的pn结

光辐照pn结会使得pn结势垒高度降低甚至消失,这个作用完全等价于在pn结两端施加正向电压。这种情况下的pn结就是一个光电池。开路下pn结两端的电压叫做开路电压Voc,闭路下这种pn结等价于一个电源,对应的电流Isc称为闭路电流。光生伏特效应就是光能转化为电能的过程,开路电压和闭路电流是两个基本的参数。

2、太阳能电池无光照情况下的电流、电压关系-(暗特性)

太阳能电池是依据光生伏特效应把太阳能或者光能转化为电能的半导体器件。如果没有光照,太阳能电池等价于一个pn结。通常把无光照情况下太阳能电池的电流电压特性叫做暗特性。近似地,可以把无光照情况下的太阳能电池等价于一个理想p

关于光伏组件iv曲线峰值功率测试仪和光伏组件iv测试功率校准的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。微信号:ymsc_2016

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~